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Preface

On January 27 - 29, 1993 a conference was organized on the occasion of the seventieth
birthday of Professor Jaap Korevaar. It was held at the University of Amsterdam under
the name "New developments in complex analysis and related topics". Professor Korevaars
broad interest in mathematics was reflected in the scope of the conference, ranging from
wavelets to several complex variables.

The participants of the conference "decided" that the conference proceedings should aim
at giving a good account of the lectures, while allowing the lecturers maximal freedom in
their choice of format. Thus the proceedings should be informal and that is what they
have become: One will find contributions ranging from extended abstracts to full grown
papers. An advantage for myself should be mentioned. The job of editing was almost
restricted to asking people for their contributions and putting them into a neat row.

The major part of the lectures is present in these proceedings. The reader will find that the
papers by G. Hedstrom and A. Lukashov do not match lectures in the program. We have
included these because such lectures would have been given if the circumstances would
have been a little different.

The papers of P. J. Braam and J. J. Duistermaat, R. G. M. Brummelhuis, C. K. Chui and
X. Shi, W. Hayman. G. Hedstrom, T. L. McCoy and A. B. J. Kuijlaars, G. G. WeIter are
reprinted from Indagationes Mathematicae, N.S., 4(4), 1993, an issue containing papers
dedicated to Prof. Korevaar. They were included to give a more complete picture of the
conference. I am grateful to the Koninrdijke Nederlandse Akademie van Wetenschappen
for permitting reproduction.

No conference can succeed without the cooperation and effort of many people. It is my plea-
sure to thank on behalf of my fellow organizers all participants for making the conference a
succes and to thank the lecturers for their clear and inspiring presentation. The conference
has been made possible by the financial support of the following organizations: European
research office United States Army, Koninklijke Nederlandse Akademie van Wetenschap-
pen, Office of Naval research European Office, Shell Nederland B.V., Vakgroep Wiskunde
van de Universiteit van Amsterdam, Wagons-lits reizen and het Wiskundig Genootschap.
Their support is appreciated very much. The Departments of Mathematics of the sister
Universities: Delft, Leiden, Nijmegen and the Vrije Universiteit at Amsterdam have been
helpful in many ways for which the organizers are grateful. Secretarial work was done skill-
fully by Philo Zijlstra, Arno Kuijlaars did a great job on the conference program. I thank
them both. Finally I thank my fellow organizers Fred van der Blij and Rien Kaashoek for
a pleasant and efficient cooperation.

Jan Wiegerinck
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TIME-VARYING GENERALIZATIONS OF INVERTIBILITY
AND FREDHOLM THEOREMS FOR TOEPLITZ OPERATORS

A. Ben-Artzi, I. Gohberg, M.A. Kaashoek

Dedicated to J. Korevaar on the occasion of his 70-th birthday,

with respect and admiration.

The three main theorems in the theory of block Toeplitz operators that deal with
invertibility, Fredholm properties and index, and with factorization of the symbol, are
generalized to a class of non-Toeplitz operators. The operators in this class may be de-
scribed as input-output operators of time-varying linear systems. Dichotomy of difference
equations plays an important role.

0. INTRODUCTION

Let T, = [ k-=0 be a block Toeplitz operator with m x m matrix symbol

00

(0.1) 4(z) ZIl = 1.
-=00

The Fourier series expansion in the right hand side of (0.1) is assumed to be absolutely

convergent. We consider Tt as an operator on 12 , the Hilbert space of norm square

summable sequences with entries in Cm. It is well-known (see [GKr]; also [GF ]) that T1'

is Fredholm if and only if det 4'(z) : 0 for each z on the unit circle 7, and in this case the

Fredholm index of Tt, ind 7"4, is the negative of the winding number relative to the origin

of the curve parametrized by the function t "-. det D(e"t ). For the invertibility of Tt it is

necessary and sufficient ([GKrJ) that 4) admits a right canonical factorization relative to

the unit circle, that is, AI factorizes as

(0.2) $(z) = €_(Z)$+(z), z E i',

'•, un nuul Atra ] nn []ll nmun m n mu ... .



where t+ and t), t_(z) = t_(z-1), are m x m matrix functions which are analytic on

the open unit-disc D, continuous on D U 7, and their determinants do not vanish on D U T.

Furthermore, given the factorization (0.2) we have T;1 = [Fkj]k'j=O, where

min(k,j)

rk3  ~iI 'k-r r-j)
r-=O

with
0 0

= j ~ +z 1
=~ z>)Y (z E 1)

j=-oo =0

Now, assume that the matrix symbol 4) is rational, i.e., its entries are quotients of

scalar polynomials. Then one may use realization theorems from mathematical systems

theory (see [K]) to show that t admits a representation of the form

(0.3) 4)(z) = I + C(zG - A)-'B, z 6 T,

where A and G are square matrices of which the order n may be larger than the order m of

4b, the pencil zG - A is regular on the unit circle Izf = 1. i.e., det(zG - A) 3 0 for jzf = 1,

and the matrices B and C have sizes n x m and m x n, respectively (see [GK], Theorem

3.1). The results about block Toeplitz operators summarized above can be reformulated

in terms of the representation (0.3). In fact, the following theorems hold (see Sections 5,

6 and 9 in [GKI).

THEOREM 0.1. Let T4' be the block Toeplitz operator on f2 with rational matrix

symbol 4D given by (0.3). Put A' = A - BC. Then T, is invertible if and only if the

following two conditions hold:

(a) det(zG - AX) O 0for Izj = 1,

(/3) C' = hn P E) Ker px,

where n is the order of the matrices G and A, and

(0.4) P = G((G- A)-'d 7 , PX = ' I- G(CGa- Ax)-ld(.

In this case the inverse of T,* is obtained in the following. Put

Ex ( 1(l - C')((G - )-ld(,

2



- ((-(0')G((G-Axfld(.
27ri.J

Then the entries of the inverse T' = [ are given by

r,, = 4ýx_. + Kij, i,j 0, 1, 2,...

(CEx(fQx)k(I Px)B, k = 1,2,...,
I= I + CEX(I - Px)B, k =0,

-CEx(Qx)-k--PxB, k=-l,-2,...,

Ki3 = CEX(2X)i(I - Px)pPX(2X)jB,

where p is the projection of C' along Im P onto Ker Px.

THEOREM 0.2. Let T, be the block Toeplitz operator on 12 with rational matrix

symbol 4 given by (0.3). Put Ax = A - BC. Then T¢ is a Fredholm operator if and only

if det(zG - Ax) # 0 for IzI = 1. In this case,

index Tt = rank P - rank Px,

where P and Px are defined by (0.4).

THEOREM 0.3. Let 4 be a rational m x m matrix function given by (0.3). Put

Ax = A - BC. Then t admits a right canonical factorization relative to 17 if and only if

the following two conditions hold:

(i) det(zG - Ax) A 0 for IzI = 1,

(ii) Cn =ImnQeKerQ' and Cn =IrnPEDKerP'.

Here n is the order of the matrices G and A, and

Q= --ij (G-A)-f Gd(, P= i- JG((G -A d(,
(0.5) 2i,2r

Q = 21--i (G-A'l-'d(, PX = 1 /G((G.- AX)-1d(.
2ri ,27ri

In that case a right canonical factorization $(() = _)C+(C) of t relative to T1 is

obtained by taking

0-(() = I + C((G - A)-'(1I- p)B, E T,

ý+(() = I + Cr(CG - A)-'B, CE 7,

3



I - C(I - T)(CG- Ax)-1 B, C E 7,

= I - C(CG - Ax)- pB, C E T.

Here r is the projection of C" along Im Q onto Ker QX and p is the projection along Im P

onto Ker P'. Furthermore, the two equalities in (ii) are not independent; in fact, the first

equality in (ii) implies the second and conversely.

The aim of the present paper is to generalize Theorems 0.1-0.3 to a natural class of

non-Toeplitz operators. First, let us remark that the representation (0.3) allows us to view

the corresponding block Toeplitz operator T* as the input-output operator of the following

discrete time system:

(Axk+l = Gxk + Buk (k = 0, 1,...)
(0.6) yk = -Cxk+l + uk (k =,1,...)

x0 E Im Q

where Q is the generalized Riesz projection appearing in (0.5). Such a representation

appears in [GK]. The above fact gives a hint for the class of non-Toephtz operators that

will be considered. To be more specific, we shall deal here with non-Toeplitz operators

T = [Tij]?cý=0 that appear as input-output operators of time-varying discrete time systems.

The role of the projection Q in (0.6), and of the projections P, PX and Q' in Theorems

0.1-0.3 is taken over by dichotomies for certain difference equations.

This paper consists of five sections (not counting the present introduction). In the

first section we recall the notion of a dichotomy and some of its properties. The second

section gives an intrinsic characterization of the class of operators that we are dealing with.

The time-varying analogues of Theorems 0.1-0.3 appear in Sections 3-5, respectively. The

present paper has the character of a research announcement; full proofs will appear in

[BGK2] and [BGK3].

1. PRELIMINARIES ABOUT DICHOTOMY

We begin by defining the notion of a dichotomy. Let a system

(1.1) Ak+lXk+l = Gkxk (k = o,1...),

be given, where (Ak+l)k=0 and (Gk)k'=0 are bounded sequences of n X n matrices. We

consider bounded sequences of projections (I - Qk)k'_0 in C" satisfying the following

4
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conditions:

(1.2) rank Qk is constant,

(1.3) Im(GkIKer,-Q&) C lm(Ak+lIJeQ&+±),

(1.4) Im(Ak+lllmQ,+,) C Ifl(Gkllm.k),

for k = 0, 1,.... Here I stands for the identity operator on Ce. We a' 'isider the

abstract direct sum Ker Qk+1 E Im Qk, with r(:)ll2 = (huh2 + f[< 2)"2, fo: Ker Qk+1,

v E Im Qk, and assume that the mappings

[Ak+lIKerQk+,,GkImGak]:KerQk+1 E ImQk -I C (k = 0, 1,...),

given by

[Ak+lIKerQk+l,GkIJmQ,]v ] = Ak+iu + Gkv

for u E Ker Qk+l, v E Im Qk, are invertible with

(1.5) sup fI[Ak+lIKrQ,,+l,aGkITmQJ]-'I < 00.
k>O

bounded sequence of projections (I - Qk)'O with the properties (1.2)-(1.5) above is

called a dichotomy for the system (1.1) if there exist positive constants a and M, with

a < 1, such that

(1.6) hI(Ak+jIKerQký,j)-'Gk+j-"1 ."(Ak+lIKeQ,.,,I)-'Gk(I - Qk)iI !< Mai,

(1.7) II(GkllmQ, )-Ak+. (Gk+-.IQk±j-l) Ak+3 Qk+jll ! Mai,

for j, k = 0, 1,.... In this case the constant rank(I-Qk) is called the rank of the dichotomy.

Note that by (1.2) the invertibility of [Ak+1IK,,Q+J,,Gk1mQJ] for k = 0,1,..., is

equivalent to the invertibility of the mappings

(1.8) GklrQk : lm Qk -' Im(GkI1,mQ), k = 0, 1,...

5
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(1.9) Ak+ILKerQk+,:KerQk+l Im(Ak+I1KeQk÷l), k = 0,1....

and to the existence of a projection Pk in C' satisfying

(1.10a) ImPk = Im(Gkl1m Qk), k = 0,1,...

(1.10b) KerPk = Im(Ak+lIKerQ-+l), k = 0, 1,.

We call (Pk)' 0 the dual sequence of projections of the dichotomy (I - Qk)O_ 0 . In partic-

ular, since the mappings in (1.8)-(1.9) are invertible, it follows from inclusions (1.3)-(1.4)

that the products in the inequalities (1.6)-(1.7) are well defined. The inequality (1.5) is

equivalent to

(1.11) sup(II(Ak+1I KeQj.÷)-1 I', II(GkJI mQ& )-', IIPkcI) < o.
k

This definition of dichotomy of singular systems appears in [BG] and IBGK1], where it is

called normal dichotomy.

Let us mention two special cases that are of particular interest. We say that the

system (1.1) is dichotomically regular if

(1.12a) Ak+I =I, Qk =0 (k = 0,1,...)

(1.12b) lim sup(sup IlGk+j-, ... Gkll) < 1.

In this case, conditions (1.2)-(1.5) are fulfilled trivially, condition (1.7) is vacuous, and (1.6)

is equivalent to (1.12b). Thus a dichotomically regular system has dichotomy (I - Qk)k=-

with Qk = 0 for each k.

We say that the system (1.1) is dichotornically coregular if

(1.13a) Gk=I, Qk=I (k=0,1,...),

(1.13b) hill SUPSupIAk+1 ... Ak+jl"/j) < 1.

6
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Also in this case, conditions (1.2)-(1.5) are fulfilled trivially. Now condition (1.6) is vacu-

ous, and (1.7) is equivalent to (1.13b). In particular, a dichotomically coregular system is

a dichotomy (I - Q)k)=o with Qk = I.

A system may have different dichotomies. Theorems 1.1 and 1.2 below (which appear,

respectively, as Corollary 6.5 in [BG] and as part of Theorem 1.2 in [BGK1]) describe the

freedom one has in the choice of the dichotomies.

THEOREM 1.1. If the system (1.1) admits a dichotomy (I - Q)k=O, then for k =

0,1,....
KerQk ={xk E C':3xk+l,xk+2 .... in C" such that

An+lxn+l = Gnx, (n > k) and lim xn = 0}.

In particular, KerQk and Ker Pk = Im(Ak+1 IKcrQk+l) are uniquely defined, and all the

dichotomies of (1.1) have the same rank.

THEOREM 1.2. If the system (1.1) admits a dichotomy (I - Qk)k'=o, then for each

subspace L of C'" with L E Ker Q0 = Cn, there exists a unique dichotomy (I - Q1)'0 of

(1.1) with ImQ 0 = L. Furthermore, all the dichotomies of (2.1) are obtained in this way.

It will be convenient to consider two types of operations on systems of the form (1.1).

Consider a second system

(1.14) A4k+lxkT1 = Gkxk, k = 0,1.

where (Ak+1)'o and (Gk)'= 0 are bounded sequences of ii x •i matrices. The systems (1.1)

and (1.14) are said to be equivalent if n = Ti and there exist invertible n x n matrices Ek

and Fk, k = 0,1,... such that

(1.15a) sup{lfEf' I, IiF,:II} < cc,

k>O

(1.15b) Ak+1 = FlAk+lEk+l, Gk = F,-'GkEk (k = 0, 1,...).

In this case a sequence of projections (I - Qk)k=0 is a dichotomy of (1.1) if and only if

(I - E-j'QkEk)' is a dichotomy of (1.14).

The second operation is that of fornming direct sums. By definition, the direct sum of

the systems (1.1) and (1.14) is the system

(1.16) [A+ +1 0 xk+1= k0 ]l Xk, k=0,1.
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If (I - Qk)k=o is a dichotomy of (1.1) and (I- Qk)k% is a dichotomy of (1.14), then it is

straightforward to check that the sequence of projections (I - Htk)•=0 where

'lk=(Qk0 Ok) =0,1

is a dichotomy of the direct sum (1.16).

THEOREM 1.3. In order that the system (1.1) has a dichotomy it is necessary and

sufficient that (1.1) is equivalent to a direct sum of a dichotomically regular and a di-

chotomically coregular system.

We conclude this section with some relations with operator theory. Consider the

system (1.1), and let L be a subspace of C'. By P• we denote the Hilbert space of all norm

square summable sequences with entries in Cn , and

(1.21) n, L{(xoxi,.)EIIxo E

We define two operators as follows:

(1.22) G: 1',-t2, G(xo,x ,..1 ) . (Goxo,Gix1,. .)

(1.23) A: n.L --- , A(xoxii, (.. A = .ixA2 X2 ,.

The following result is contained in Theorem 1.1 and Proposition 2.3 of [BGKI].

THEOREM 1.4. Let A and G be as (1.22)-(1.23) respectively. Then the operator

G - A is invertible if and only if the system (1.1) admits a unique dichotomy (I - Qk)k=D

with Im Qo = L. Moreover, AG - A is invertible for each A on the unit circle T if and

only if it is invertible for one A on the unit circle, and in this case

-' 1(,\G -A)-'GdA =diag(IIL,Ql,Q 2 ,...),

and

Sj IG(AGa- A)- dA = diag(Po,P, ... ),27ri

where (I - Qk)•o is the unique dichotomy of (1.1) with ImQ0 = L, and (Pk)'= 0 is its

dual sequence of projections.

The next result gives an interpretation of the dichotomy in the time invariant case.
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LEMMA 1.5. Let A and G be n x n matrices. Then the system AXk+l = GxA

(k = 0, 1,...) admits a dichotomy if and only if AG - A is invertible for IAI = 1. In this

case, there exists a unique time invariant dichotomy I - Q, = I - Q, where

Q= -j'f(A\G-A)YGdA,\

and the dual sequence is given by P1, = P (k = 0,1,...), where

P-= _L G(AG - A)-'dA.

2. REALIZATION THEOREM

In this paper we are interested in operators that appear as input-output operators

of an input-output system. The input-output systems that we have in mind are singular

time-varying systems of the form

Ak+lxk+l =Gkxk+Bkuk (k=0,1 .... )
E Ay = -Ck+lxk+l + uk (k o, 1 .... ),

xo EL.

Here, (Gk)O'=0 and (Ak+l)k_ 0 , (Bk)'=o and (Ck+i)'= are bounded sequences of matrices

of sizes n x n, n x n, n x m, m x n, respectively, and we assume that

(2.1) Ak+lXk+l = Gkxk (k = 0, 1...),

has a dichotomy (I - Qk)'=o with Im Q0 = L.

Choose an input sequence (uo, ul,...) in I' . Then, by Theorem 1.4. the first equation
t2

in E has a unique solution (xo, x ,.... ) E enL. Inserting the latter sequence into the second

equation in E yields an output sequence (yo, yi,...) E t2, which is uniquely determined

by (uo, ul,...). It follows that E has a well defined input-output operator, denoted by TE:,

which acts as a bounded linear operator on f2. The latter statement also follows from

Theorem 1.4 and from the fact that the sequences (Bk)- 0 and (Ck+l)k' 0 are bounded.

As usual for operators on 12,, we represent TE by an infinite block matrix Ty, =

[-rij]?=0, where each rij is an m, x m matrix. A straightforward application of Theorem

1.1 in [BGKIJ shows that in this case

(2.2a) i = - Ct+j(Ai+l lKerQ,. G ) .G .." (Aj+ 21,KerQjy')-'G.+l(Aj+jl KfrQj4, )-1

.(I - Pj)Bj (i > j),
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(2.2b) rij = - Ci+I(A+Ij KerQ,+ f)-'(In - Pi)B (i

(2.2c) rj = C + ,(G ,+ lII Q,.+i)-'Ai+2 ... (Gj_1II mQ,_J)-

. Aj(GjIilQj )-'PjBj (i < j).

Here (Pk).%. is the dual sequence of projections of the dichotomy (I - Qk)'o. Since the

sequence (I- Qk)°_0 is a dichotomy, we can use the boundedness of the sequences (Bk)•=0

and (Ck+1)"O=0 and the estimates (1.6), (1.7) and (1.11) to show that there exist constants

M> 0, 0< a < 1, such that

(2.3) IITrijJ < Mali-il (i,j = 0,1,...)

In the next three sections, we study the invertibility of the operator TE, its Fredholm

properties and its UL-factorizations. In the present section we characterize the class of

operators T on 12 that appear as input-output operators TE of the type considered here.

Consider a bounded linear operator

(2.4) T = [tij]i= 12 - 12

We say that T admits a realization if T = TI: for some input-output system E of the form

described in the first paragraph of this section.

The following result holds.

THEOREM 2.1. Let T = [tij]=?. 0 be a bounded linear operator in t2M. Then T admits

a realization if and only if

(2.5) Jltijll < M ala-il (i,j = 0, 1,...)

for some positive constants M, a with a < 1, and

(2.6) sup {rank H-, rank H+} < 00,
V=0,1,...

where

Gt o tjl ... tV+ to,., t ,I.+l "'"
= t+lO t,+1,1 ... t,+H =,1 (0 0, 1,.).

• . , t uV tv'V+ l '
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If conditions (2.5) and (2.6) are fulfilled, then one may construct a realization of

T explicitly in terms of the matrices HI- and H-1 by using restrictions of forward and

backward shift operators acting on appropriate sequence spaces. Theorem 2.1 may be

viewed as an operator version of the realization theorems in Section 5 of [GKLe], which

are algebraic in nature and concern lower triangular block matrices which do not have to

be related to bounded operators on an 12 -space.

Finally, we make one remark about band operators. An operator T = [tij=0 in f,

is called a band operator if there exists a positive integer r such that ti = 0 whenever

ji - jf > r. Theorem 2.1 shows that each band operator admits a realization. The proof

of Theorem 2.1 will appear in [BGK3].

3. INVERTIBILITY

In this section we describe the invertibility properties of input-output operators in

terms of dichotomies of systems.

We let T be the input-output operator of

Ak+lXk+1 =GkXk+BkUk (k=0, 1,...)

A Y = -Ck+lxk+l + uk (k = 0, 1 .. ,

xo E L.

The description of T appears in the previous section, and Theorem 2.1 describes the class

of operators T which are obtained in this way.

As in the previous section we assume that the system

(3.1) Ak+lxk+l = Gkxk (k = 0, 1,...),

admits a unique dichotomy (I - Qk)k=0 with

(3.2) ImQ0 L.

The next result shows that the invertibility properties of T are determined by a dichotomy

property of the following associated system

(3.3) Ax+xk+l = Gkxk (k = o,1,...),

11



where
(3.4) Ax (k = .),

1C+ I = Ak+ 1 - BkCk+1I = .

THEOREM 3.1. Let T be the input-output operator of the system E, let (I - Qk)k=o

be the unique dichotomy of (3.1) satisfying (3.2), and denote by (Pk)=o the corresponding

dual sequence of projections. Then the following conditions are equivalent:

(I) The operator T is invertible in I'.
(II) The a:wsociated system (3.3) admits a dichotomy (I - Q')'&= such that 0n Qo

Ker Q' = Cn.

(111) The associated system (3.4) admits a dichotomy whose dual sequence (Pk' )'o satisfies

Im Po e Ker Po' = Cn.

Moreover, if T is invertible, then T` is the input-output operator of the system

Ax+ k+1 = GkXk + BkUk (k = o,1 .... ),
EX yk = Ck+ IXk+lI + uk (k = 0, 1,...),

xo E L.

For a smaller class of operators involving regular input-output sytems and a stronger

notion of dichotomy Theorem 3.1 appears in [GKvS]; the proof of Theorem 3.1 will appear

in [BGK3].

Let us also remark that using the explicit description of an input-output operator,

one can give formulas for the entries of T` in the following way. Let (I - Q' )'0 be

an arbitrary dichotomy of (3.3) with dual sequence of projections (Pk,)'=. Then the

entries rij of T` = (rij)?? 0, where T is the input-output operator of E. are given by

rij = 4P' + Kj where

= Ci+I(A'+IIKQ- )-'Gi ... (Ax 2 KQ )-Gj+X(Aj4 +2 1KeQ )-1
(3.5a) *(I - PfB (i> 3 2)+,

•(-pJx B (i > A),

(3.5b) l = I, + Cij(Ax+I 1KerQx+ )-'(I - P x)Bi (i =

=ij Ci+l(Gi+llmQ+,x )-'A,+, ... (Gjf IrmQx_ )-l

(3.5c)+ Ax A(Gj J1.Qx)-'Pý Bj (G < A)

12
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and

(3.6) K, Cit1(A IIKer Qx÷1 )-1 G,... (AxIKeQ; )-G1(A IK,,Q.)-1p(3.6) Kj=C+('IK-Q,
Ax(GIIIm.Q)-"'A.. -A(Gjl1,Q.)- 1 PxBj (i,j =0,1,..

where p is the projection of C" along In P0 onto Ker Pox.

In the case when T = T. is a Toeplitz operator with rational matrix symbol 4(z) =

I + C(zG - A)-'B (z E T), it is easy to see that Theorem 0.1 of the introduction follows

from Theorem 3.1 and equalities (3.5)-(3.6) above, and Lemma 1.5.

4. FREDHOLM PROPERTIES

The Fredholm properties of input-output operators are described using the notion of

an asymptotic dichotomy. We say that the system Ak+lxk+l = Gkxk (k = 0, 1 .... ) admits

an asymptotic dichotomy if there exists a nonnegative integer N such that the system

Ak+N+lXk+l = Gk+NXk (k = 0, 1...) admits a dichotomy. It follows from Theorem 1.1

that the rank of a dichotomy of the latter system is independent of N. We call this common

rank the rank of the asymptotic dichotomy.

As in the previous section, we consider the input-output operator T of a system

Ak+lxk+l = GkXk + Bkuk (k =01,...),

Yk = -Ck+lXk+l + Uk (k =o, 1....),
xo E L,

and we assume that the system Ak+lxk+l = Gkxk (k = 0. 1,...) admits a dichotomy

(I - Qk)•__o with hInQ0 = L.

THEOREM 4.1. Let T be the input-output operator of the system E_ above. Put
A = - BkCk+1 (k = 0, 1,...). Then T is Fredholm if and only if the system

(4.1) Ax+xk+1 = Gkxk (k = 0,1,...)

admits an asymptotic dichotomy, and in this case

(4.2) index T = p + dim L - n,

where p denotes the rank of an asymptotic dichotomy of (4.1).
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It is easy to obtain Theorem 0.2 of the introduction from this result and Lemma

1.5. For a smaller class of operators involving regular input-output sytems and a stronger

notion of dichotomy Theorem 4.1 appears in [GKvS]; the proof of Theorem 4.1 will appear

in [BGK3].

5. CANONICAL FACTORIZATION

Let T = [tj]' 0 be a bounded operator in I' in its standard matrix representation

where tij are m x m matrices. The operator T is upper triangular (respectively lower

triangular) if tij = 0 whenever i > j (respectively i < j). We say that T is diagonal if

tij = 0 whenever i 5 j. Let us remark that if T is upper (respectively lower) triangular and

invertible, then T-` is also upper (respectively lower) triangular. We say that T admits

a canonical upper lower factorization if there exist an invertible upper triangular operator

T_ and an invertible lower triangular operator T+ such that T = TT,. We refer to [GF]

for canonical factorizations of operators and functions.

A necessary condition for T to admit canonical factorization is that T is invertible.

This condition is not sufficient in general.

It is easily seen that if T admits two canonical upper lower factorizations T = TT+=

T7 T!' then there exist an invertible diagonal operator D such that T' = TD and T'=

D-'T7. Conversely, if T = T7T+ is a canonical upper lower factorization for T, then

defining 7' and T,' by the above formulas we obtain another canonical factorization.

Assume that as in the introduction, T = T¢ = [4-3j].'_-0 is a Toeplitz operator where

44 are m x m matrices with Z"'=-oO II¢kl! < oc. Let (I(z) = JY'=_ qk~Zk (z E T) be the

symbol of T. Assume that 4$ admits a right canonical factorization $(z) =

where ,P+ and ;_, $_(z) = 4_(z-'), are rn ×n m matrix functions which are analytic

on the open unit disc D, continuous on D U T and their determinants do not vanish on

T. Put 4t+(z) : 0 -Y0" kz $I_(Z) = J:-o• ?•-Zk, and set = 7+2 ... = 0
and 7-y - 0. Then the operators Tt+ [ and 7. are1 2 .. = [i- ~ij=0 an1. 7-ji=0ar

lower and upper triangular invertible operators, and the following canonical upper lower

factorization holds

(5.1) T7 =T T ¢T, .

Conversely if T, = TT7. is a canonical upper lower factorization, then in particular,
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T# is invertible. Whence, -t admits a right canonical factorization 4) = €_A+. This

factorization also induces the canonical upper lower factorization (5.1). By the uniqueness

of the canonical upper lower factorization, it follows that there exists a diagonal operator

D such that T_ = Tt_ D and T+ = D-'T,+.

The above remark shows the equivalence between canonical upper lower factorization

of Toeplitz operators, and right canonical factorization of matrix valued functions in the

Wiener class. By this equivalence, Theorem 0.3 is equivalent to a statement about canonical

upper lower factorization of Toeplitz operators with rational symbol.

We now present our extension of this result for input-output operators of time varying

systems.

Let T be the input-output operator of the system

Ak+,xk+l =: GkXk + BkUk (k 0, 1....)
E Yk = -- Ck+1lYk+l +4 Uk (k 0 .1,.)

I xo EL

where the system

(5.2) Ak+lXk+l = GkXk (k = 0, 1...)

admits a unique dichotomy (I - Q)k)=0 with

(5.3) Im Q0 = L.

The next result gives necessary and sufficient conditions for the existence of a canonical

upper lower factorization for T. The conditions are in terms of the associated system

(5.4) Ax×Xk+1 = Gkxk (k = 01,..)Ak+1~~ :: .

where A'+ 1  A 4 +i - BkCk+l (k = 0, 1...).

In the statement below we use the following terminology about direct sums. Let be

given a sequence of direct sumn decompositions

(5.5) k q) Wk = Cn (k = o, ,.)

We say that the direct sum decomposition (5.5) holds uniformly if the sequence of projec-

tions (l-k)= 0 defined via Ker Ilk = Vk, ImHk z= Wk (k = 0,1,...), satisfies supk>0 JIrlkII <

00.
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THEOREM 5.1. Let T be the input-output operator of the system E, where the system

(5.2) admits the dichotomy (I - Qk)k'=o with (5.3), and let (Pk)'o be the corresponding

dual sequence of projections. Then the following conditions are equivalent:

(I) The operator T admits a canonical upper lower factorization.

(II) The associated system (5.4) admits a dichotomy (I - Qx' ) such that the following

direct sum holds uniformly

(5.6) Im Qk E KerQ' = C' (k = 0,1,...).

(III) The associated system (5.4) admits a dichotomy whose dual sequence of projections

(P')'=o satisfies the following direct sum condition uniformly

(5.7) Im Pk E Ker Pk'= Cn (k = 0,1...).

Moreover, assume that (5.6) or (5.7) hold for one dichotomy of (5.4). Then (5.6)

and (5.7) hold for every dichotomy (I - Qx)k¶.. of (5.4), and a canonical upper lower

factorization of T may be obtained in the following way. Let Pk and rk be the projections

in Cn defined by

Kerpk=ImPk, Ihnpk=KerPkx (k = 0,1,...)

KerrTk=InlQk, ImTk=KerQx (k=0,1 ... ).

Then the canonical upper lower factorization T = TT+ holds, where T_, T, 1 T;1

are, respectively, the input-output operators of the following systems

Ak+lxk+l = Gkxk + (I - pk)Bkuk (k = 0, 1,...)

E_ We = -Ck+lXk+l + Uk (k = 0, 1,...).
xo E L,

Ak+,Xk+l = GkXk + BkUk (k =0,1,...)
E+ Yk = -- 'Ck+ I'k+ IXk+ I + Uk (k =0,1, ... )

xo EL,

Ax+lXk+l = Gkxk + Bkuk (k = 0, 1....)
{Y =k=Ck+1(1-Tk+1)Xk+I+Uk (k = 0,1 .... ),

xo E L,
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and fAx+x.+1 = GkXk + PkBkUk (k =0, 1,...)
+ Yk = Ck+lXk+l + Uk (k o,

I Xoe L,

where A 1 = Ak+- BkCk+l (k = 0,1,.

The proof of Theorem 5.1 will be given in [BGK2]. In contrast with the Toeplitz

case, in the time-varying case the invertibility of T is not equivalent to the existence of a

canonical upper lower factorization.

If T' = T, is a Toeplitz operator in f with a rational matrix valued symbol, then

as in the preceding sections, one may represent 4 as in (0.3) and view T, as the input-

output operator of the system (0.6). Theorem 5.1 applies to this representation of T7 as

an input-output operator. Using the description given in Lemma 1.5 of dichotomies of

time invariant systems, it follows that condition (i) and either direct sum condition in (ii)

of Theorem 0.3 are equivalent to condition (II) or condition (III) above. This proves the

first part of Theorem 0.3. The explicit description of the right canonical factorization of t

given in the second part of Theorem 0.3 follows from: (a) the connections between the right

canonical factorization of 4i and the canonical upper lower factorization of the operator

T,, given in the beginning of this section, (b) the explicit formulas of the systems E± and

± given in Theorem 5.1, and (c) the representation of Toeplitz operators as input-output

systems, given by (0.6).
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Estimates for the a-equation
in the one-dimensional case

Bo Berndtsson

This talk is concerned with the equation

(1) Ou

in a domain 01 in C. If V is a subharmonic function in Q, we are interested in
estimates for (1) with the weight factor e-', and in particular, we are interested
in the canonical solution to (1) in L2(e-w1), meaning the solution of minimal norm
in this space. These problems have previously been studied in a number of papers
of which we refer to (F-Si], (Chri, [Be]. I will not make a systematic review of
previous results, but rather make some additional remarks and formulate some
open problems.

First we note that an estimate of u in terms of f in L2(e-W) is equivalent to an
estimate of v = ue-' 2 in terms of g = fe-/ 2 in L2. Making these substitutions,
we can rewrite (1) as

(2) APv = g

where A, = e-9/21jew/2 . This substitution was used in (Chr] and it is quite
helpful.

Next, we note that the formal adjoint of D, is -D., where

D /2 -w/2

The domain of the adjoint consists of functions that vanish on the boundary of
fl. Since the L2-minimal solution must lie in the range of the adjoint, we are led
to study the Dirichlet problem

(3) !RDIDa = g

a = 0 on OS.
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The canonical solution to (2) will then be given by

v"- D=,oa.

Now let us consider a number of kernels associated with the previous problems.

1. The Green's function N¢(z, C) satisfies that

a(z) - j N,(z, ()g(()dA()

is the unique solution to (3).

2. The Poisson kernel P,((, z) satisfies that

u(0) P,,((,z)h(z)

is the unique solution to A W Du=, u = h on &n.

3. The kernel K,(z, () satisfies that

v(z) = j K,(z, ()g(()dA(()

is the LP-minimal solution to (2).

Using Green's formula, it is easy to verify that

P,((, z) = -iD4 ,N,,(z, ()dz

when z E Ofl, just like in the case p = 0. On the other hand, we also have

K,,(z, () = D.Np(z, ()

from the previous discussion, so we see that the behaviour of LP-minimal solutions
on the boundary is governed by the Poisson kernel, i.e., by the behaviour of
functions that are "harmonic" with respect to the "Laplacian" !Dp..

20
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Lemma I Let a E C2 . Then

Alai' = 2Re(Db,,D,.a)a + IDwal2 + IfbWal 2 + AVa,2

and

(where a $ 0).

In particular, we see that lal is subharmonic if DvDva = 0.

,From this it follows that P. is dominated by the standard Poisson kernel, so we
get:

Proposition 2 Let p be subharmonic. Then
K, (z,•) :5 1Ko (z,•)

for z E Oil.

This estimate is certainly false for z E fl, but at least in the case when 01 is a
disc, it holds in a weaker form, [Be].

We shall now see a case when the presence of a weight makes the estimates strictly
better than in the unweighted case.

Proposition 3 Let 01 = {p < 0} where p is subharmonic and p E C1(!D). Let p
be subharmonic, and let v be the PL-minimal solution to (2).

Then it holds sup IV ]-f<l sup Igl

When Wp is bounded, S1 is the disc and p = 1zl 2 - 1, this proposition implies the
theorem that we get solutions to (1) that are bounded on the boundary if f is
a Carleson measure. The proof is a consequence of the fact that if D,,Dca = 0,
then Ial is a subsolution to the Schrodinger operator A - 1AW. An interesting
open problem is whether the conclusion of the analogous theorem of T. Wolff is
also satisfied by a canonical solution in the same way.

Finally, we consider a related problem which probably requires a more detailed
analysis of our operator D.,D,.
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Conjecture Let h be a bounded function on Ofl and let ax solve

AxoD.%ax = 0 in f1

aA = h on On.

Assume that V E C , is subharnonic and satisfies

{z E 0t,AV = 0} CC n

Then

1imA 0 alAII < 1

in n.

It is easy to see that
lA 4ooI)A/I < 1,

by using again that laxI is a subsolution to the Schrbdinger operator A - ½AV.
The conjecture will follow if one can prove it when AVo > 0 everywhere, and one
may even assume that Ao ; 1. If, on the other hand, AV, = 1, the conjecture
holds. The reason for this is once again related to Schr&linger operators. The
operator D,D, is itself a Schrbdinger operator, but of a more general form than
we have used so far - it includes a magnetic field = AV.

If this field is constant, one can compute solutions explicitly and verify the con-
jecture in that case.

The conjecture is related to the analysis of &b on weakly pseudoconvex domains
in C0, in particular to the problem of analytic hypoellipticity.
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ABSTRACT. A normal form is given for real symmetric systems of linear partial
differential equations, at points where the principal symbol has a two-dimensional
kernel under assumptions which apply to the generic case.

1. INTRODUCTION

This paper takes a step towards understanding the propagation of polarization of
solutions of real, symmetric linear systems, Qu = 0, of partial differential equations.
We will show that the operator Q can be brought into the very simple standard form

(1.1) + D X2D3  1 a
x2D3  -(D1 - D2) D i Oxj

This normal form can be achieved by splitting off elliptic summands, multiplying
by invertible pseudodifferential operators and conjugating with invertible Fourier
integral operators. The normal form is obtained modulo terms for which the full
Taylor expansion of the principal symbol vanishes at every point of E. Here Z is the
subset of the cotangent bundle, where the principal symbol has a zero eigenvalue of
multiplicity higher than one. The construction is microlocal, that is, in some conic
neighborhood of a given point in the cotangent bundle. Of course, one would hope
that the standard system is easier to investigate than the system in its original form.

In order to explain the assumptions under which the results can be proved, we
recall that the propagation of polarization can be paraphrased mathematically as the
behaviour of asymptotic high-frequency solutions of the m-th order system Qu = 0.
If

u(:) = e(,ax
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is a high frequency wave, with frequency r, phase covector { and amplitude vector
a(x), then

(QU) (X) -. T' e"12, 1) Q(x, C) a(x),

asymptotically as r -+ oo. Here Q(x, t) is a matrix, which is called the principal
symbol of the operator Q, which is instrinsically defined on the cotangent bundle
T*M of M, the phase space of classical mechanics, on which (x, ý) are canonical
coordinates. One says that u(x) is an asymptotic solution if Q(u) is of order 79 with
l<m.

The operator Q is called elliptic at (x, C) if Q(x, C) is invertible. Clearly, u(x) can
only be an asymptotic solution if the amplitude vector a(x) belongs to ker Q(x, C), the
polarization space of Q at (x, {). Therefore, high-frequency solutions with nonzero
amplitude vector can only occur if (x, C) lies in

N = {(x,C) E T*M; det Q(x, C) = 0}

the characteristic set of Q.
At the points of N where det Q has simple zeros, the polarization space is one-

dimensional and one can reduce the study of the operator to that of the scalar case,
cf. Dencker [8]. In turn the scalar case with simple zeroes can be reduced to the
study of the operator 1, using multiplication by elliptic operators and conjugation
by invertible Fourier integral operators, see Duistermaat and Hormander [13, Sec. 6].
A generic scalar operator will only have these, so called, simple characteristics, see
Nuij [221.

For effects which are truly specific for systems, we therefore must turn to the subset
E of the points (x, {) E T*M, at which det Q has zeros with multiplicity more than
one. This location is called the optical or acoustical axis by physicists when they
consider the Maxwell equations or the equations for waves in elastic media. It has
been known for some time that these multiplicities sometimes occur for topological
reasons and are present generically, see Lax [19], John [14] and Hormander [18].

Rather than investigating the situation for generic systems we shall assume that for
each (x, {) E T*M, the principal symbol Q(x, ý) is a real and symmetric matrix. This
is the case for many systems in mathematical physics, in particular for all systems
arising from variational problems, even when arbitrary lower order terms are added
as perturbations. Under explicit and generic nondegeneracy conditions, stated in
section 3, we obtain the normal form in a conic neighborhood of (z, C) E E.

The two sign choices in (1.1) lead to drastically different behaviour of the solutions.
For the plus sign, the operator is hyperbolic with respect to the variable x1 . Close
to E, the bicharacteristic curves in the regular part of the characteristic set N form
helices, narrowly winding around smooth curves in E. Along with it, the polarization
space rotates rapidly. For the minus sign, the operator is hyperbolic with respect to
X2 . The bicharacteristic curves in N approach E and bounce away like a hyperbola
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approaching the intersection of its asymptotes. During the change of direction, the
polarization space makes a quarter turn.

When thinking of systems with multiplicity, one first thinks of the phenomenon
of conical refraction of light, in which a thin lightbeam changes into a cone of light
upon reaching an bi-axial crystal. This was predicted by Hamilton and experimentally
verified by Lloyd in 1837, see Hamilton [9] and Born and Wolf [5, p. xxii]. For studies
with modern analytical tools see for instance Melrose and Uhlmann [21J and Dencker
[7]. The normal forms for 2 by 2 systems with conical refraction are

(D + D 2  D 3

D3  D,- D2)

The non-generic aspect of this system lies in the fact the it is independent of the co-
ordinates in the base making the singular part of the characteristic variety involutive.

Our paper is organised as follows. In section 2 we discuss how splitting off elliptic
factors leads to 2 x 2 systems. In section 3 we study some basic symplectic geometry
of the symbol in order to formulate the assumptions under which the normal form
can be achieved. In section 4 we state the result and begin the proof which we
finish in section 5. We finish, in section 6, by checking that Maxwell's equations and
the equations for elastodynamics satisfy the genericity assumptions and realise both
signs.

This work was started subsequent to listening to a lecture delivered by V.I. Arnol'd
in Utrecht in the spring of 1990. We thank him for his inspiration.

2. SPLITTING OFF ELLIPTIC SUMMANDS

Let E -+ M be an k-dimensional smooth real vector bundle over an n-dimensional
paracompact smooth manifold M. We will study a linear pseudodifferential operator
Q of order m, acting on the space r(M, E) of smooth sections over M. Since our
constructions are (micro-)local, we use a local trivialization of E, in which Q can be
identified with a k x k-matrix of pseudodifferential operators. The principal symbol
Q(x, ý) of Q is a k x k-matrix, depending smoothly on (x, ý) E T*M \ 0. It is
homogeneous of degree m in the sense that

Q(x, 7-0 = rm Q(x, 0, r > 0.

The half-line {(x, rý) I r > 0} is called the cone axis through (x, ý), and subsets
of T*M are called conic when they are the union of cone axes. For example, the
characteristic set N is a closed conic subset of T*M\0, because det Q is homogeneous
of degree km.

Near elliptic points, Q has a pseudodifferential parametrix R = Q 1 of order
-m, in the sense that QR -, RQ -' I near (x, ý). Here the expression "A -, B
near (x, t)", for pseudodifferential operators A, B, means that A - B is smoothing
(has order -cc) in a conic neighborhood of (x, t). We start with a basic, simple
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observation (compare Dencker [7, proof of Prop. 2.5] and Hormander [18, Lemma
2.1]).

Lemma 1. Suppose that we have the block decomposition

(2.1) (Q= • Q 1, "

in which Q,, has i rows and j columns, r = k - 1, and Q,. is elliptic in a conic open
subset U of T*M \ 0. Then there exist elliptic pseudodifferential operators A, B of
order 0 such that in U

Here P* - P is of order < 14 if Q* - Q is of order < M, the principal symbol P(x, •)
of P is real if the principal symbol Q(x, ý) of Q is real, and finally P(x, •) = 0 if
dim ker Q(x, t) = 1.

Proof. Take

A (~-iQ.) B (~

Then we get the desired form for AQB, with

P Q Qu - Q "' Q -,1 Q,.

0

In the situation of Lemma 1 we will say that the I x I operator P is split off from the
k x k operator Q, and refer to the process as splitting off an elliptic summand after
multiplication with elliptic factors. This process is compatible with the investigation
of propagation of singularities. To see this, note that

u:= B(

is smooth if and only if v and w are. Then Qu is smooth if and only if Pv and w are
smooth. In the context of asymptotic high-frequency solutions, "smooth" has to be
replaced by "asymptotically small". Note also that the principal symbol B(x, ý) of
B is an isomorphism from ker P(x, ý) E 0 to the polarization space ker Q(x, ý) of Q.
In particular these spaces have the same dimension.

We have
detQ(x, •) = detP(x, t) detQ,(x, �),

in which det Q,., (x, t) is pointwise non-zero. This implies that det Q and det P have
the same order of zeros. If dim ker Q(x, ý) = 1, then P(x, t) = 0, so det P has a zero
of order at least I at (x, t). Because the same holds for det Q, we have proved:
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Lemma 2. If dim ker Q(z, 1) = l and Q(x, t) is invertible modulo its kernel, then
det Q has a zero of order at least I at (x, t).

3. THE GENERICITY ASSUMPTIONS

In the sequel, we will concentrate on a conic neighborhhood of a point in the set

E := {(x, ý) E N I dimker Q(x, t) > 1}.

Note that E is a closed, conic subset of N. In this section, we will investigate the
geometry of the symbol around E, with the purpose of establishing the genericity
assumptions under which the normal form can be obtained. We begin with the
consequences of Lemma 1 for operators with real symmetric principal symbols.

Corollary 3. Assume that, possibly after multiplying Q with elliptic factors, the
principal symbol Q(x, ý) is a real symmetric k x k-matrix, and that

dim ker Q(x°, CO) = 2.

Then one can split off a 2 x 2 operator P, with real symmetric principal symbol
P(x, ý). Near (x°, . 0 ), we have

(x, ý) E E .= P(x, •) = 0 -=• dim ker Q(x, •) = 2,

and det Q has a zero of multiplicity more than one at each point of E.
Moreover, the rank of the Hessian of det Q at (x°, ýo) is at most equal to three. If

it is equal to three, then there is a conic open neighborhood U of (x0, Mo) in T*M \ 0,
such that E n U is a smooth submanifold of codimension three in U.

Proof. The symmetry implies that the range R of Q := Q(x°, ýo) is equal to the
orthogonal complement of K = ker Q. and QIR is invertible from R to itself. So,
with an orthonormal basis for which K is spanned by the first two basis vectors and
R by the remaining k - 2, we get the situation of Lemma 1 with I = 2 and Q(x, •)
symmetric. This proves the first part of the Corollary.

For the last statement, we observe that we can write the symmetric matrix P(x, •)
in the form
(3-1) p=pz, = = (' q + r s

s q - r

for uniquely determined smooth functions q, r, s of (x, •), homogeneous of degree m
in ý. The set E is equal to the intersectin of the sets where q, r and s vanish. The
scalar symbol equals
(3.2) p(x, t) :=det P(x, •)=q2 - r2 -- S

from which we see that the Hessian of p at each point of E has rank at most three, with
equality if and only if dq, dr and ds are linearly independent. In turn, this implies
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that E is a smooth codimension 3 submanifold of T* M \ 0. The last statement follows
because the Hessian of det Q is an nonzero multiple of the Hessian of p at each point
of E. 0

Our next ingredient is the canonical symplectic form
ft

0= E dZ A dA j
j=1

in T*M. Each smooth function f in T*M defines a Hamiltonian vector field
" Of a Of aHf ="- E~ z OiO

j= IOi0I k0)

or, equivalently, in a coordinate independent definition:

izgja = -df.

Because c is closed, it follows from the homotopy formula that the Lie derivative of
a with respect to any Hamiltonian vector field is equal to zero or, equivalently, that
a is invariant under the flow of Hf.

If g is another smooth function, then we shall also use the Poisson brackets

gf"}:= ' f Dg 0f ag = Hg,
j=1 axj a j a xj X

which define a Lie algebra structure on CI(M).
We now turn to the Hamiltonian vector field of p, the solution curves of which on

N \ E are called the bicharacteristic curves. ,From (3.2) we see that

H, = 2(qHq - rH, - sH.),

vanishes at (x, t) E E, so it has an invariantly defined linearization

L = 2(dq ® Hq - dr ® H, - ds ® H.)

at (x, (), which is a linear endomorphism of the tangent space T :=(,)(T*M).
Alternatively L can be regarded as the Hamiltonian vector field on T of the quadratic
part of the Taylor expansion of p at (x, ý). The rank of L is equal to the rank of the
Hessian of p at (x, 4). It is at most equal to three, with equality if and only if Hq,

H,. and H. are linearly independent at (x, ý). We will assume this in the sequel.
Notice that the image R := im L is spanned by Hq, H, and H, at (x, ý). On the

other hand, K : = ker L is equal to the intersection of the kernels of dq, dr and ds at
(x, ý), so equal to the tangent space to E at (x, ý). Now the fact that the flow of
Hp leaves a invariant implies that L is an infinitesimally symplectic transformation,
that is,

a(Lu, v) + ,(u, Lv) = 0, u, vE T.
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It follows that the range of L is equal to the symplectic orthogonal complement of
the kernel of L. Now E is said to be involutive at (x, ý) if the symplectic orthogonal
complement of T(., ) E is contained in T(., ) E. In our situation this would mean that
R C K, or L' = 0, so that the assumption that L is not nilpotent implies that E is
not involutive at (x, 0).

If we restrict a to R, then its kernel is equal to RflK and o, induces a nondegenerate
antisymmetric bilinear form on R/(R n K). Its dimension is even and at most three,
so we either have R = Rn K, corresponding to the case that E is involutive at (x, ý),
or dim R/(R n K) = 2, in which case or is a nonzero 2-form on R/(R n K). The flow
of L preserves the form, hence L is traceless on R/(R n K). Therefore, either L has
two purely imaginary opposite eigenvalues or two real opposite eigenvalues.

Note that dim(R n K) = 1, so there is always a zero eigenvalue for LiR. which
actually leads to a nilpotent part of L in T. For instance in the case that L is an
infinitesimal rotation, this causes the bicharacteristic curves near E to be narrowly
winding helices along the curves which are tangent to R n K.

On the basis in R of the vectors Hq, H, and H, at (x, •), the matrix of L is equal
to

( 0 -2{r, q} -2{s,q}
(3.3) 2{q, r} 0 2{ r}

2{q, s} 2{r, s}

By computing the characteristic polynomial one recovers that it has a zero eigenvalue
and that the two other eigenvalues X satisfy

(3.4) A2 = 4({r, q}2 + {s, q}2 - {r, s}2)

Hence, the condition that L is not nilpotent is equivalent to the condition that the
right hand side of (3.4) is nonzero. If it is negative, then L defines an infinitesimal
rotation in R/(Rn K), whereas L induces a hyperbolic area preserving flow in R/(Rn
K) if the right hand side of (3.4) is positive.

Because det Q is a nonzero multiple of det P, we get that the linearization LQ(X, ()
of the Hamiltonian flow of det Q at (x, ý) e E is a nonzero multiple of L, so all the
conditions can be formulated in terms of Q, and are invariant under multiplication
by elliptic factors and splitting off elliptic summands. We are now ready to formulate
the assumptions under which we will derive our normal form. These coincide with
the assumptions made by Ivrii [11], [12, Thin. 3.1 and 3.4], in his investigation of
propagation of singularities and by Arnol'd [3, Sec. 8.1-8.4], [1], [2] in his study of
the normal form of the characteristic set N near E.

Assumption 4. (1) Q has a real and symmetric principal symbol Q(x, •).
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(2) dim ker Q(x0 , •o) = 2. This implies that det Q has a zero of multiplicity at
least two at (X0 , CO), which makes that the linearization L = LQ of the Hamil-
tonian vector field of det Q at (x°, e) is invariantly defined.

(3) The rank of L is equal to three and L is not nilpotent.
(4) The direction of the cone axis, given by the Euler vector field

n

E=

is not contained in the range of L.
(5) n=dim M>3.

It is clear from the above description, that the assumptions are of a generic nature.
More precisely a generic, real symmetric pseudo differential principal matrix symbol
will meet the variety of symmetric matrices with corank 2 transversely. The same
transversality holds for differential operators, c.f. Arnold [3], Khesin [15].

4. FORMAL NORMAL FORMS

Assumption 4, combined with Lemma 1, enables one to split off an elliptic sum-
mand and reduce to a two by two system with principal symbol as in (3.1). In this
section we will determine the normal forms for these 2 x 2 systems. We will say that
a smooth function R is flat at Z if the full Taylor expansion of R vanishes at each
point of E. The main theorem of the paper is

Theorem 5. Let P be 2 x 2 system with a symmetric symbol which satisfies Assump-
tion 4 at a point (x0 , CO) E T * M of multiplicity two. There is a smooth canonical
transformation f, homogeneous of degree one with respect to the C-variables, from a
conic open neighborhood V of (0, dx 3 ) E T*IRn to a conic open neighborhood U of
(XO, Co), and a smooth mapping

A : U -* GL(2, R),

homogeneous of degree (1 - m)/2, such that

6' +i 6 X263(4.1) (APA')(f(x, ,))= + ,+ ,
\ X26 ±(tl - ) +

where the remainder term R is flat at

f-_(E) = {(X, t) E I = = 2 = 0}.

The plus sign in (4.1) corresponds to the case that the nonzero eigenvalues \ of L,
cf. Assumption 4 and (3.4), are purely imaginary, whereas the minus sign occurs if
these eigenvalues are real.

The main step in achieving the normal form is:
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Proposition 6. There is a GL(2, R)-valued function A defined in a conical neigh-
bourhood U of (xo, to) E E, homogeneous of degree 1/4- m/2, such that APAt equals

( 4F)

with:
(4.2) {4,r}={4,s}=0 {ii}=+1 inthe+case

{4,}= {if}= 0 i,}= 1 in the - case

where the equalities hold modulo functions which are flat at U n E.

Proof. The proof is the subject of section 5. 0

Theorem 5 is now proved from Proposition 6 in the following way. In the ++ case,
write

t1= A4, t2 X2A~ = 9/A\, t3 = A\2,
in which A is as in Proposition 7 below. By the homogeneous Darboux theorem, see
e.g. Hormander [17, Thm.21.1.9], we can locally extend these coordinates to a set
of coordinates which define the desired homogeneous canonical transformation. The
factor 1/A in front of the whole matrix is eliminated if we replace A with A1/ 2A.

In the +- case, we switch back to the previous case by means of the homogeneous
canonical transformation

t2ý+X263, X 2 ý- -6/63, t3 1-+ -6, X3 I-+ -X 3 - X66

Finally, in the - case, we use

tl = Af, 62 = A4, X2 = t/A, 3 = \ 2.

Note that in general the canonical transformation does not respect the fibration

(x, x) : x TIR" -+ R".

Proposition 7. Let 4, F, s satisfy (4.2), and assume they are homogeneous of degree
1. There is a positive smooth function A, homogeneous of degree ½, such that {A, 4},
tA, f }, and {A, i} are flat at E.

Proof. (Compare Roels & Weinstein [231.) The Hamiltonian ' Ictorfields H4, H; and
H; commute modulo flat terms. This is based on the Jacobi identity for Poisson
brackets, which is equivalent to

[Hf, Hg] = H g,,s.

By adding flat terms to 4, f and i we can find 4, f and i, such that H4, Hj and Hi
commute. For instance, in the + case, we may take 4 = 4 and take f equal to the
solution of {4, fr} = 0, with f = f on a conic codimension one submanifold, which
is transversal to H4. Because H4 is tangent to E, f - f is flat at E. Next let S be
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a conic codimension two submanifold of T*M, transversal to H4 and Hj, such that
S n E is a codimension one submanifold of E. The desired i is obtained by taking
{4, i} = 0, {f, f} = ±1 and S = i on E.

The Euler vectorfield E in Assumption 4 satisfies for any functions f, g:

(4.3) E{f, g} = {Ef, g} + {f, Eg} - {f, g}.

Let M0 be a codimension 4 submanifold of T*M through (x0 , ý0) E E, transverse
to H4, Hý, Hj, E. We choose A equal to one on M0 and extend it to a function
homogeneous of degree ½ on M, = R,>0 . M0, using the multiplicative action (x, •)
(x, re), r > 0. The requirement that A Poisson-commutes with 4, f, i defines it on
an open subset of T*M. From the above relation one deduces that for f f 4, g, s:

{f,EA - 1,}= 0
21

using the homogeneity of f. Thus A is homogeneous of degree i everywhere. 03

5. PROOF OF PROPOSITION 6

The formal normal forms will be achieved by induction on the order. The first
proposition will establish the vanishing of the relevant Poisson bracket up to first or-
der. Before proceeding with the induction step we will introduce the usual machinery
associated with filtrations by orders.

In this section we have use for the function

e = q{r, s} + r{s, q} + s{q, r}.

At every point of E the Hamilton vectorfield of e spans the nullspace of the restriction
to E of the symplectic form. This subspace is equal to the intersection of the kernel
and range of L, c.f. (3.3). Recall that we wrote our symmetric symbol matrix as

p=(q+r s ).
s q -- r

With A (a an invertible matrix-valued function homogeneous of degree 0,

we can write
APA' = +V -• )

where

4- i(a 2 +b 2 +c 2 +d 2 )q + !(a 2 -b+c 2 -d 2 )r + (ab+cd)s
(5.1) f = 1(a2 + b2 - - d2)q + 1(a2 b2 -c 2 +d 2)r + (ab-cd)s

S= (ac+bd)q + (ac-bd)r + (ad+bc)s
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Lemma 8. We can find A and a conical neighbourhood of (x, t) such that on E n U

(5.2) {1, f} = {f, i} = 0 {., f} = ±I in the + cases

Proof. We first deal with the +-case and then indicate what modifications one makes
for the minus case. The equations {1, f } ={f , i} = 0 on E will be satisfied if 4 is a
constant multiple of the function e. This is the case if

½(a2 + b2 + C2 + d2 ) = p{r, s}
(5.3) 1(a2 - b2  c 2 -d 2 ) =p{s, q}

(ab + cd) -- {q, r}

for a constant p. To see that this equation can be solved observe that the map:

Aa2t+A2 ab+cd)A -' AtA = ab+cd b2 +d 2

exhibits a locally trivial fibration GL(2, R) -4 0(2) \ GL(2, R). Its image consists of
the symmetric matrices with 2 positive eigenvalues, a simply connected component
of R3 minus a cone. A choice of sign for p ensures that a solution can be found.

Assuming that this has been done, i.e. that {q, r} = {q, s} = 0 on E, let A =

(a 0) to get:

S2q 2 r a2s.

This gives {1, F} = {14, i} = 0 and {if, i} = a4{r, s} on E we have that (5.3) is fully
met.

The -- case is done similarly, swapping the role of q and r by using the fibration:

Here we get all invertible symmetric matrices with negative determinant and we can
solve an equation similar to the one above without choosing a sign. El

We will use the following spaces of formal functions. 01 serve that q, r, s are

coordinates transverse to E. Define the ring:

R = C•o() ®R R[[q, r, sII,

where IR[[ ]] denotes formal power series. Let V' be the functions homogeneous of
degree j with respect to the conic structure in T*M. All the V1 are filtered by the
degree of the lowest order polynomial term in the Taylor expansion in q, r, s. We
denote this filtration by

R = R D VA 3 ....
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We regard P as a symmetric matrix with coefficients in i4 and write P E I
Again we will write the proof out in the ++ case, the other cases are similar. Our
equations can be written as the condition that

(5.4) E+ (+r ) --+ ({q,r},{q,s},{r,s}- 1): S2(14J) o R's q - r)

maps to zero. Above we saw that for suitable A E GL(2, 1Z0 ) we have

E+(APAt ) E 1JZ 9 R3 .

Proposition 9. Assume that E+(P) E IZ' 0 R3 for some k > 0. Then there is a
6A E gl(2, IV) such that for A = I + 6A we have

E+(APAt ) E JZ+ 1 0 R3.

Proof. This proof is computational. Let 6A = (a bc d 'th b'dE 'k>O

From (5.1) we see:

-- (l+a+d)q+ (a - d)r+ (b + c)s mod *R,2k+1
(5.5) f = (a - d)q+ (1 + a + d)r+ (b - c)s mod lZ2k+1

i= (b + c)q+ (c- b)r+ (1 + a + d)s mod JZ2k+1

The next step is to work out the Poisson brackets appearing in (5.4). The Poisson
brackets map 14 0 1R.. to ,Rm+k-2, but taking the Poisson brackets with special
functions one can do better. In particular,

(5.6) f -+ {q, f} f f-{r, f} -s f 1 {s, f} + -•

all map Z,, to IZ,.

Combining the previous two sets of equations we get:

(5.7)
{f4, i} = {q,r}+{a+d,r}q+{a-d,r}r+{b+c,r}s-(b+c) modlk+ 1

f{4,} = {q,s}+{a+d,s}q+{a-d,s}r+{b+c,s}s+(a-d) mod l,+,
= {r,s}-1+{a-d,s}q+{r,b+c}q+{b-c,r}r+{b-c,s}s

+{a + d,s}r + {r,a + d}s + 2(a + d) mod 'lk+,.

Modulo lZk+l the functions 4, F, s depend only on the image of 6A in Rk/IRk+l.
We will now define suitable vector spaces and operators to discuss the solubility

of these equations. We use the associated graded vector spacesmay view 9R/ =
Rk/lRk+1, which is isomorphic to the space of homogeneous polynomials in q, r, s of
degree k with coefficients in C(¶E). First we solve the first two of (5.7) for

a-a-dand/½-b+c
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as follows. Write the equations as 'j (a, 3) = 0j, j = 1, 2, where

§ 1(, (a ) := ,3 - la, r}r - {f3, r}s = /3+ r8a/Os + sa/i/as,

§I2(a, /) := a + {a, s, }r + {/, s}s = a + rOa/Or + s9/0/Or,

and

{q, r} + {a + d, r}q,

02 --{q, s} - {a + d, s}q).

In the description of §1 we have used (5.6).
These operators on QR& leave the I + 1-dimensional subspace GRkj,, spanned by

the qk-lrus' with u + v 1 1, invariant. The kernel of

S= (§:, §2): 2 _+(GRk,) )2

is spanned by the elements (r-P'sP, -r-A+ls•-l), s = 1,... ,l, hence dimker'P = I.
On the other hand, its image is contained in the kernel of the mapping

T : (gRkj,,) 2 -4 G;n,,,_ : (Y, 6) i-+ {y, s} + {6, r} = OY/Or - 46/1s.

The codimension of ker %F is equal to 1, so we get that the range of 't is equal to the
kernel of IQ.

On the other hand, using the Jacobi identity and the fact that {q, r}, {q, s} and
{r, 7} - 1 all belong to Rk, we get that %(01, 02) = 0. The conclusion is that the
equations 4P,(a, /) = 0j can indeed be solved.

Finally we solve the third equation of (5.7) for y- a + d E gRA, by substituting
the solution for b + c and a - d found above in terms of a + d. For b - c we can
substitute anything. The relevant operator is now:

=, : GRk -+ GRI : 7 4 27- {r, ^}s - {s, -y}r = 27+ sOy/Os -&+r y/i9r.

This map is linear over C°(Z) and .(qPra's') = (2 + a + r)qPr's'. So = is invertible,
which allows for unique solubility. 0

To prove Proposition 6 we call on Borel's lemma [41, (173 which supplies a smooth
matrix function which has the Taylor expansion prescribed by the lemma above.

6. EXAMPLES FROM MATHEMATICAL PHYSICS

We first take a look at the Maxwell equations and show that they can satisfy
Assumption 4, with either sign for the sum of the squares of the eigenvalues of L,
cf. Ivrii [11]. The Maxwell system in a dielectric medium is a system for R3 valued
functions Ej on R3 x R, which can be written as:

O2E
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where cii(x) is the dielectric tensor, which is dependent of the space variables and
which forms a symmetric 3 by 3 matrix with 3 positive eigenvalues. Assume that c
is diagonal, then we can write the symbol matrix as:

/••)2 -•-3 -

The determinant of the symbol can be expressed as:

p =4•(bc- ,),

with c = fe(l 3- - t3 -,

c~~~ =2 _,o -t32

a = (62 - i)( 3- 2)• +e 2 (I- )+ .

As is customary in optics, we assume that •0 $ 0, and we also assume that the
eigenvalues of the dielectric tensor satisfy that ql(x) <2 •(x) < e 3 (x).

If the gradient e9 p/O9• of p with respect to the c-variables is equal to zero, then

p =½ EGOPoG= 0, •z 0, b = 0, C = 0. Conversely, if •2 = b -c - 0, thenthe rank of the symbol matrix is equal to one, as is easily verified. The conclusion

is that, away from •o = 0, E corresponds to •2 = b - c = 0, and that outside £• we
even have Op/&O• $ 0. Also note that E is parametrized by:

•2 0 • ••(2 2a•), •=& ( 2

P3- &D _ 3 -- 1

with •o $ 0. (Cf. Kline and Kay [16] and Landau &• Lifshitz [20].)
Using that

aC=b = c = 0 in U.
Because da, db and dc are linearly independent, we see that the rank of D2p is

equal to three. Substituting sfb = q + r, y 0c = q - r, ( 0a = s, we have (3.2). Using
(3.4) and scaling at (Op = 1, the equation for the eigenvalues A of DH t reads

A (A2 
- {b, c}2 + 4{c, a} {a, b}) = 0,

or equivalently

(A-t{b, c} 2 +4{c, -2} {l2, b}(e 2 - f)(•3- )) - 0
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Because {f, • } - Of /OX 2 and {b, c} only involves partial derivatives of the e, with
respect to x, and X3, we get quite simple expressions if the ej only depend on x2. In
this case the sum of the squares of the eigenvalues is equal to a positive multiple of

4[e3(f 3 - f 2)c + fl(E2 - f1)e31,
in which the prime denotes differentiation with respect to x2 . Clearly both signs can
occur.

Next we turn to the equations for elastodynamic waves. These are again a system
for an R3 valued function on R4. Let p(x) be the density of the material, cq,..(x) the
moduli of elasticity and ui(x) the displacement vector. The equations of motion are:

(6.1) pOtu - C".1Oqt9.U,. = 0.
The elasticity constants satisfy pointwise the symmetries: cp,, = Cqpr, = Copq and
the positivity Cpq,.apa,q Ž 0 for any symmetric matrix apq.

Here we shall show that both signs are again realized in this system. Moreover, we
observe once more that the derivatives of the material properties are responsible for
the sign.

It takes considerable care to determine the conical points of the characteristic
variety of the system (6.1). It is known that in the projectivized cotangent bundle
the number of conical points is always even, must lie between 0 and 16 and can take
any value satisfying these constraints, see Holm [101.

In a medium of cubic symmetry there are many additional relations between the
c.,. and one can exploit these to compute the sign of the system at the points of
multiplicity. In particular we can call on the results of Burridge [61 who computes the
Hessian of the determinant of the symbol at these points. Working in a single fibre
and putting ý0 = 1, he finds a point of multiplicity 2 with coordinates (1, a, a, a), for
a certain number ca. At this point he introduces an orthogonal set of axis, the first
with direction (0, 1, 1, 1) and all in the hyperplane ýo = 1. In the linear coordinates
of this system of axes he gets:

p(x,7) = R(' - S((2 + (3)

where R, S are positive functions of the moduli of elasticty which can vary indepen-
dently. From this we immediately deduce that both signs can occur.
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Convolutions of generalized functions, applied to diffraction
theory of crystals and quasicrystals.

by N.G. de Bruijn

Eindhoven University of Technology

Department of Mathematics and Computing Science

EXTENDED ABSTRACT.

X-ray diffraction of crystals (and quasicrystals) can be described by Fourier theory
and convolution theory for generalized functions. The idea is that a crystal is a
generalization of the "Poisson comb": a countable sum of delta functions in space,
with the property that its Fourier transform has again such a discrete structure. One
of course needs a theory of generalized functions (distributions) for it. Because of the
symmetry in this particular problem it seems to be atractive to take a distribution
theory with Fourier invariance properties. One of the classes introduced by Gelfand-
Schilow is an excellent candidate for it. It is the class that was represented in a
different form by J. Korevaar's "Hermite pansions" [7] and by a particular kind of
traces based on a semigroup of operators in a space of smooth functions in [1]. Each
one of these different introductions to one and the same space of generalized functions
has its own merits.

Gelfand-Schilow's introduction of the class is in the usual style of linear functionals
on a space of test functions. For the class to be considered here, the test function
space has to be the class S122 (see [4], Ch. 4, section 2.3). This class will be called
S from here on. It is the set of all entire functions f for which there are positive
constants A, B and M such that

If(x + iy)l :_ M exp(-Ax 2 + By2 )

for all real x and y.
Korevaar works on a different principle. Any square integrable function on the

real line can be expanded as a series of Hermite functions, and can therefore be
characterized by means of the sequence of coefficients (cl, c2,...) in that expansion.
For the square integrable functions one gets all sequences with }cI 12 + Ic212 + ... < o0.
From then on, Korevaar uses the sequences instead of the functions, and extends the
class by liberalizing the condition to c, = O(e'") (for all e > 0).

In the approach of (1] the same space of smooth functions is used as by Gelfand-
Schilow, but the path from the set S of smooth functions to the set S" of generalized
functions is entirely different. It gives a prominent role to a particular semigroup
consisting of integral operators N. on S, defined for a > 0, with N0 No = Na+# for
all a > 0, 3 > 0. These operators, called smoothing operators, commute with many
other important operators, like the Fourier transform.

The class S* of all generalized functions is now introduced as the set of all mappings
of the set of positive numbers into S with the property that NaF(13) = F(a + 3) for
all a > 0, 0 > 0. Such mappings can be called traces. Particular traces are those
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which are generated by elements of S: if f E S then the mapping that sends a to
Njf is a trace. Identifiying f with this trace we have the natural embedding of S
into S*.

The advantage of this approach is that one can conceive all sorts of operators
and structures in S (where life is easy) and extend them to S" by simple algebraic
operations.

In [2] and [3] this approach to generalized functions was used for the Fourier theory
of quasicrystals.

Among crystallographers it is taken for granted that X-ray diffraction patterns
of crystals (or quasicrystals) are related to Fourier theory in the following way. A
narrow X-ray beam passes through a crystal and gives a diffraction pattern on a
photographic plate. The crystal can be considered as a distribution in space. Now
the idea is that the picture on the plate can be described as the intersection of the
Fourier transform of that distribution with a plane through the origin (the direction
of that plane is determined by the direction of the beam).

In order to derive such a statement it is attractive to have an infinite crystal, an
infinitely small beam, a photographic plate at infinity, and similar simplifications that
seem to be quite far from reality. Until now, a satisfactory treatment of all this has
not been given in the literature.

Treating the effect of the finiteness of beam and crystal in the framework of Fourier
theory and generalized functions, a theory of convolutions of elements of S" is re-
quired. A very satisfactory theory meeting these requirements was given by A.J.J.M.
Janssen in [6]. Some of the material needed for it is contained in [5].
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Logarithmic convexity of L2-norms for

solutions of linear elliptic equations

Raymond Brummelhuis*

Dedicated to prof. Jaap Korevaar
on the occasion of his 70th birthday

In the course of their work on equilibrium and minimal field distributions of finitely
many electrons on the sphere in R 3 , J. Korevaar and I. Meyers discovered the following
surprising analogue for harmonic functions of the classical Hadamard 3-circles theorem:

Theorem 1. (Korevaar and Meyers, cf. [3], [4]): Let 0 < p < r < R < 00. There exists
a constant a E (0,1), only depending on p/R,r/R and n such that for all u harmonic on
the ball B(0, R) _ R-,

(1) I[ulloo,,- :_5 I~uI*,IUIo--Q

Here, and in the sequel, II iI,, (1 < p _< oo) denotes the LP-norm on the r-sphere S(O,r),
with respect to the rotation-invariant measure normalized to 1.

The classical Hadamard theorem, which is (1) for holomorphic u on an annulus {z : p <
I z j< R} g C, with a = log(r/R)/log(p/R), is proved by exploiting the subharmonicity
of log ju(z)j. However, for u harmonic log Iu(z)I is in general far from being subharmonic.
An arithmetic version of (1) for subharmonic u is of course well-known (cf. e.g. [1]).

We briefly sketch Korevaar and Meyers' elegant proof of (1). The key observation is
the following L2-version of (1):

(1'/1)i , <_ ir !ýil l IU '2,,I I2,

where, in fact, 3 is the exponent from the classical Hadamard theorem; (1') easily implies
the following, weaker version of (1):

(1" [ulloo,• :5 CIUI0 1-a110

for some constants C and a depending on p/R,r/R and n, since the Lw-norm of u on
any sphere can be estimated in terms of the L2-norm of u on a slightly larger sphere (e.g.
by using the Poisson integral formula). Careful estimates, in combination with the usual
arithmetic Hadamard inequality for subharmonic functions, show that one may in fact take
C = 1; cf. [3] for details.

* This research has been made possible by a fellowship of the Royal Netherlands Aca-

demy of Arts and Sciences.
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Now to prove (1'), Korevaar and Meyers observed, by writing u as a sum of spherical
harmonics, that IIUII2, is given by a convergent power series in r, with non-negative coef-
ficients. An easy computation (or alternatively, an application of the classical Hadamard
theorem for holomorphic functions) then shows that log IIUI12,, is a convex function of log r.

It is natural to ask whether suitable analogues of (1') and (1") also hold for solutions
of a general second order homogeneous elliptic linear partial differential equation with
real-valued (variable) coefficients

V. (A(x)Vu) + B(x) . Vu + c(x)u = 0,

assuming that c(x) •_ 0, so that the solutions u satisfy the maximum principle. Recently
the author could prove that this is indeed the case, with S(O, r) the geodesic r-sphere in
the Riemannian metric with metric tensor A(x)- 1 . The main step is again to prove an
inequality like (1') (with perhaps an extra constant C = C(p, r, R) on the right and a
different 1). The implication (V') --+ (1") again follows from known properties of solutions
of elliptic equations; one can for example use a well-known inequality of J. Moser [5] to
majorize the L'-norm of u on a compact subset by the L 2-norm on a larger compact set.

The purpose of this note is to explain this generalization of (1') in a typical "model case",
in which we replace the ball by a half-space, and restrict somewhat (but not essentially)
the class of elliptic equations under consideration. This allows us to present the main idea
of the proof of the general case while avoiding technicalities.

We will consider formally self-adjoint 2 nd order real elliptic equations of the form

(3) 02 u(3) Lu = 2U+ V,. (A(x, y)Vxu) = 0

on the upper half space
R'+' = {(x,y) x E R',y > 0}.

Here V. - (9z,,...,0•), the gradient in the x-variables, and A = A(x, y) = (Ajk(x, Y))jk

is a bounded Lipschitz-function on R•'+, with values in the real symmetric positive def-
inite n x n matrices. We moreover assume A to be uniformly elliptic, that is, we assume
that there exists a constant c > 0 such that

c 12 < (A(x,y)ý,•) ,Vý E R , (x,y) E R+

The simplest example of such an operator is of course the Laplace operator:

71

A = 02 a2

j=1

and the natural analogue of (1') in the upper half space context is:
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Proposition 2. Suppose that u is harmonic on R"+' and that

(4) sup2>0 [[u(y)II2 = J u(zy) 2dx < 00

Then log IJu(y)j22 is a convex function of y.

Proof. Harmonic functions on the upper half space satisfying a Hardy-condition (4) have
a Poisson-representation as:

(5) u(x, y) = (2r JR) I -R

where f(x) = limy._o u(z, y) (limit in L2-sense) and f is the Fourier-transform of f, cf.
for example Stein [6].
Using (5), Plancherel and the Cauchy-Schwarz inequality, one easily proves that

d2 log JIu(y)122 > 0.
Remark. A similar result with a similar proof for harmonic functions in a strip can be
found in Janson and Peetre [2]. The proof of theorem 3 below when specialized to the
Laplace operator will provide another proof of this proposition, without use of the Fourier
transform.

We now wish to generalize this proposition to solutions of Lu = 0. In the sequel we
will be somewhat cavalier about the precise decay of u(x,y) as I(x,y)I -+ o, and just
assume it to be sufficient to justify all subsequent integrations and integrations by parts.
Also, we will only consider real-valued classical (C 2 ) solutions.

The main result of this paper is:

Theorem 3. There exists a function h = h( 77) > 0, defined for q} > 0 such that for any u
on R'+1 satislying Lu = 0, log I1u(h(?l))11 2 is a convex function of 71. In fact, we can take

(6) h(i1) = c log(%+ 1),
-y c

where c is the constant of ellipticity in (4), and

"y = II max(aiA,0)I11

(which is finite, since we assumed A to be Lipschitz). We are taking here the positive
part in the sense of functional calculus of symmetric matrices, i.e. OyA composed with the
projection onto its positive eigenspace. If -y = 0, we take the limit in (6): h(77) = 1.

Remark. It is in general not true that log IIu(y)112 is a convex function of y: one first
has to make a change of variables y = h(7). It is of course no great surprise that a single
non-convex function can be changed into a convex one by some change of variables. The
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point of the theorem, however, is that one can do this in one stroke, for all solutions u of
Lu = 0 simultaneously.

Proof of theorem 3: Let

F(v7) = F(i;u) := IR u(x, h(tj)) 2dx

We have to show that for a suitable choice of h = h(,)

(7)d2 logF =F"()F) - F'(,7) 2 > 0,(7) •-•2log F(W)-=
Tn F(n)2

for all u satisfying Lu = 0. To simplify notations, we will write in the sequel

V=h(i7) V for / v(x, h(77))dz

and F

I /Jh(,7) v for I 1") v(xy)dxdy.

Also, we will just write V instead of V,. With these conventions:

(8) F'(=) = 2h'(i1 ) j uOYu

and

F"(iJ) 2h"(q) =h•i) u Oyu + 2h'(17)2  (OVU) 2

(9) + 2h'(,7) 2 =h(,) U U.

Since 0.2u = -V. (AVu), an integration by parts shows that the last integral in (9) equals

2h'(77)2 fj=h(1 )(AVu, Vu)

We next use the following simple Rellich-type identity:

Lemma. For any a > 0,

=(O8u)2 = J (AVu, Vu) + J _((&A)Vu, Vu),

where 1,A = (OyAjk(X,1y))j,-.
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Proof.

fy4 0,U2= -2r.JR.Ou 8,2u dzdy

= -2 f/ J1R.' (AVu, V(19yu)) xy

since 8yu + V (AVu) = 0, and through integration by parts. Since

2(AVu, V(ayu)) = ay(AVu, Vu) - ((OaA)Vu, Vu),

the lemma follows.

If we use the lemma, (9) becomes

F"(?) -= 2h"(v) fy=h(,7 ) u 1Ou + 4h'(17) 2 1=h(n) (j9u)2 - 2h'(17) 2 f JJ>h(n)((iyA)Vu, Vu)

To have (log F(vq))" > 0, we try to let the first integral compensate the last. To accomplish
this, rewrite the first as a volume integral:

2h"(i1 ) ./=h1,)uOyu = -2h"(q) J J ({U)2 + u OYu

= -2h"(77) f fJ>h()) (OYu) + (AVu, Vu)),

again by the differential equation and integration by parts. Now,

(AVu, Vu) Ž cIVu12

and
((OyA)Vu, Vu) < (max(OyA, O)Vu, Vu) •7- I Vu 12

Therefore, if h"(q!) < 0,

2h"(77) u Oyu - 2h'(1)2  >h(,(A)Vu Vu)

Ž 2(-ch"(i7) - yh'(q)2) f Jh_ Vu 12.

Hence

(10) F"(n) _ 4h' (q)2 f= h (,))(YU7)2

47



if -ch"(q) - yh'(v7)2  0, which is the case if h(q) = 1 log(-17 + 1), and (7) then follows
from (8), (10) and the Cauchy-Schwarz inequality. This proves the theorem.

Remark. The proof above uses the fact that A(z, y) is a Lipschitz-function in y, uniformly
in z. It would be interesting to know whether this regularity assumption on the coefficients
of L can be weakened, e.g. to A continuous or even to A E L' only. This would greatly
enhance the potential usefullness of theorems like 3 in non-linear PDE theory.

It is natural to ask what remains true of theorem 3 for solutions of a non-homogeneous
equation L(u) = g. One could think, for example, of L-subharmonic functions: L(u) Ž_ 0.
Korevaar and Meyers already observed that (1) will in general be false for subharmonic
functions: consider, for example, u = max(log IzI,0) on C. The proof of theorem 3 allows
us to further analyze this question. Let us agree, from the on-set, that we will only consider
u's for which ]Iu(y)112 $ 0 for all y. Then careful analysis of the proof of theorem 3 shows
that if h"(i}) = -Kh'(17) 2 with K _> y/c, then

) (log F(77))" > 2h(11)2 . (K ff (Oau) 2 + 2ff (au)Lu +F~7 >_(,?) >a:(,7)

K J J'.2 h(,7) uLu + fyhn uL(u))

Now since 21ab <_ a2 + b2,

121f (Byu)Lu~ 1 Jf (O,9ýu) 2 + J f (Lu)2

and we obtain the following corollary of (the proof of) theorem 3:

Corollazy 4. Suppose that u . Lu > 0 (for example, u is a non-nc ye, L-subharmonic
function) and that, moreover, u satisfies the differential inequality

ILuI • C.Jul

for some C > 0. Let h(q) = K-1 log(KgT + 1) with K = max(c-'ly,C, 1). Then
log Iju(h(v}))1j 2 is a convex function of 71 > 0.

Proof. Use that (Lu)2 < C .ul u-ILul = C . u . Lu and hence

-f IL h (Lu)2 > _cf 12>h(,) uLu,

which can be compensated by the third integral in (11), since u Lu > 0.

This corollary can for example be applied to non-negative solutions of a semi-linear equa-
tion

Lu = F(u)
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with non-negative and sub-linear right hand side:

0 < F(r) CIrl, r ER.
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On LO-Boundeduess of Allaie Frame Operators

Charles K. Chui' and Xialiiang Shi2

Dedicated to Professor Jaap horevnar on the occasion of his 7 0Ih birthday

Sumnmary. This paper is concerned with a study of the family of affilie frame operators

(ef)(.R) := E Qi'k(f'jk~i'jk(X),
j,kEZ

induced by some wi, E L2(R), where q.'j,k(.I) := 2J/',,,(2Jx - k) and f -- {j,k} E Cto(Z').

With very mild decay assumption on Vi,, T(- can be considered as linear operators on LP(R),

1 < p < co. and the objective of this p)apcr is to identify the family F of those 1' that

give rise to bounded linear operators T@ on LP. The main result is that any 4' E Lip a,

0 < a < 1, satisfying O(jlV-'-) at inlfiity for some e > 0, is in F provided that it has

zero mean.
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1. Introduction and results

Recently. there has been much interest in the study of series representation of functions

f in• := L2 (R) in terms of dilations knd translations of a single function 0 E L2. The

most popular consideration is an infinite series of the form

(1.1) f(x) E ckjX),
),kEZ

where

(1.2) 0j,k(x) := 2/"w(2x - k).

For tile representation (1.1) to be useful, the family f ,&,.: J, k E Z) is usually required to

be a frame (cf. [1, p. 681 and [4, p. 561). If the representation (1.1) must also be unique

for all f E L', then this frame is necessarily an unconditional basis of L2 (cf. [6]). In

particular. if {fi'j,k} is an orthonormal (o.n.) basis. then 0 is called an o.n. wavelet (cf.
[1,4,51).

Any frame { 1'.,k ) must be a Bcsael sequence. defined by

(1.3) II(fL j,k)L <_ BIIfII . f E L2 ,
j,kEZ

for some positive constant B. called a Bessel bound. That is, only the upper frame bound

is used as Bessel bound in the definition of a Bessel sequence. Here and throughout, the

standard notations for inner product and norm for L' are used. By modifying a result in

(6], the following lemma provides an operator approach to the study of affine frames as

discussed in our earlier work (31.

Lemnma 1. Let f'P E L'. Then the famnily {4',,k}, j,k E Z, defined by (1.2) is a Bessel

sequence with Bessel bound B as in (1.3) if and onlv if the linear oI)erator

(1.4) (TIf)(X) := 1 : /J')bJtx

j,kEZ

is bounded in L2 with lIT, I < B.

As an application of the above leumna. we can reformulate a result in Meyer [5, pp. 270-

2711 as follows.
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Theorem A. Let ,' E L-. satislv 1)tth

1.f) C (1 +

t I 1,'(y) - !- CIx - j.", .r, y E R,

for some - > U. 0 < a < 1. and

(1.6) j l(x)dx = 0.

Then 7"1 as defined in (1.4) is a bounded linear operator in L2 .

In order to extend this study to LP LP(R). we consider the linear operators

(.)(T f )( ) : = 0 j, k U, 'I'j, k)Vj' k W),

jkEI

where (" k = {0.k} E C := ['(Z 2 ). which are initially defined on the class D := D(R) of

compactly suplported C'O functions on R. and then extended to all of LP as follows.

Definition 1. Te. as defined above, is called a bounded linear operator in LP, where

1 <p < 00, if
(Toef,.g) := j k US,f ý'j. k)(V'j, k,g9)

j,k

is convergent and there exists a positive constant A, such that

(1.8) sup I(Tef,g)l < .4AplgllqIjfjjp
IlIq < I

for all f, g E D. where p-' + q- 1.

Hence, (1.8) can be extended to all f E LP and q E Lq. An LP version of Theorem A

is the following (see Daubechies [4, p. 2961).

Theorem B. Let ak be a meastwable function on R such that

(1.9) { I,'(x)I < 0(1 + I.rI)-I-', ;

104"~ 5 C(1 + HF'I .-1" E R,

and that

(1.10) {0jk: J, k E Z7} is an o.n. basis of L2 .

Thenfor any 0= {Oj,kl with Oj.k = ±1, Te is a bounded linear operator in LP, 1 < p < co.

The objective of this paper is to establish the following sharper result.
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Theorem 1. Lc; t:" be a measurable 'ujctju on R satisti'ig (1.5). Then To is a bounded

linear operator in L" 161r any 0 E ('3 where I < p < oo. if and only if 4 satisfies (1.6).

It is clear that (1.5) is weaker than t 1.9), and it is also a wellknown fact that for ' to

be an o.n. wnvelet (as defined by (1.10)), it must satisfy the zero-mean condition in (1.6)

(ef. [1, 1). 71 and 14, 1). 71). From the proof of Theorem 1, we will see that the operators

To also satisfy the following.

(i) Te is of weak type (1,1), in the sense that a positive constant C exists, with

{.x: I(Tef)(.r)I > A}I < -jjlfjJ,, A > o,f E LV;
(ii) T~ is a bounded linear operator from H1 to H': and

(iii) To is a bounded linear operator from HM' to DM0.

As a consequence of Theorem 1. we also have the following result.

Theorem 2. Let li" E L2 satisfy (1.5)-(1.6). such that 1'k,,k} is an unconditional basis

of L2 and that its dual basis is also generated b)y sonie ý' E L2 in the same way as (1.2),

with J, satisfying (1.5)-(1.6). Then {r'j,&} is also an unconditional basis of LP for any p,

S<p < 00.

2. Proofs of the results

We first establish the necessary condition (1.6) in Theorem 1. For this purpose, we

recall from [4, p. 631 that for 4, to satisfy (1.3), it must also satisfy

(2.1) / O(W)d <00,

(and in fact, this integral caamot exceed 2B In 2; see [2]). Now, by consecutive applications

of the duality principle and the interpolation theorem, we see that if T9 is bounded in LP,

where I < p < o. then it must also be bounded in L'. Hence, considering Oij = 1, we

conclude, by applying Lemma 1, that 0 must satisfy (1.3), and hence, (2.1). Since 4' E L',

we have ý E C(R) so that '(O) = 0. This establishes the necessary condition (1.6).

To prove that (1.6) is a sufficient condition, we only need to verify that To, where

e E M•, is a Calder6n-Zygmund operator with kernel

(2.2) K(x. y) := E #•,k4'j,&(x)4',k(/).
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hudeed. it is welilkown (cf. Meyer (5. p. 2331) that a Calder6n-Zygtnund operator is

necessarily bounded in LP(R) for any p, 1 < p < ýo. That is, to complete the proof of

The•rem 1. it stitfices to verify the foIllowing properties.

(a) IK(.r, Y)I < CI.x" yj -1',

(6) 
IK (r, y) - K W '. y)I I C I. - X +6'

Ixr - Y1 1+6 1

(c) I h(y,x) - K(y, x')( I c (x - x

Ix- Y1 1+v

for some 6 > 0, where x 0 y, (x - £'" < :51r - yl, and

(d) the linear operator To is bounded in L'.

In order to establish (a), (b) and (c), we need the following.

Lemma 2. Let ,D(t) be a nonnegative and decreasing function oil [0, oc) that satisfies

(2.3) C1(0) < oo and c(t)dt < o.

Then there exists a constant C > 0 such that

(2.4) 'NI [- kj)Dy - _I < -C ), x,y E R.

kEZ

Proof. If ly - ki > ½Ix - yl, then by the inonotonity of C, we see that

(2.5) - k I) <' (ix-YJ)

On the other hand. if ly - kj < ½1z - yIl, then

Ix - k _> I x - yj - ly - k1 > ••x - Y1,

so that we have

The estimations (2.5) and (2.6) then imply that

E (.(I - kI)4(ly - kI)= ( E + -) (z-k)(y - kj)

-_ - IV-kl<xf-55

_.4 (W() +• 00(t)dt) 'k ( IX2
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Hence, by (2.3). we see that 12.4) holds with

C' 4 5(0D() + fu ((Ot)d M

I. Proof of (a). For fixed x y t, we can find ju E I such that

1
(2.7) 2)0 < < 2)0+'- X - AJ

Setting

(1 +X)l++E

and applying the first inequality in (1.5), we see that

(2.8) IK(x, y)1 C C 2, Z 'D(12'x - kl)4(12-'y - kl)
j<_jo kE1

+C 2C E 21 (12'x - kl)4(12'y - kl)
J>,)o kEZ

:-1 + 12, say.

Now, since 00
lb(12'x - 4.I),D(12'-y- 4,1) < 4(o) + 2 f (t)dt,

we obtain

I, <_C E2' <C2j.

So, it follows from (2.7) that

(2.9) I1 <_ CIx - yJ-'.

Also, if j > jo, then (2.7) implies that

12"x - 2 1yi> 2J1ix - yj >- 1/2.

Hence, by Lemma 2, we obtain

(2.10) 1, _5 C E 2 j( 1 + 12jx - 2jyl)-'-"
)>jo

<C E2 2-j ' iq-(I - YI-I-C

)>jO

<Ciz - yl1-.
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By rombinKn (2.S). (2.9) and (2.10), we obtain (;1).

2. Proof of (b) and (c). To verify (b), we set

- 2(1 +,- +)

and observe that

IK(x, y) - K(.c', y)1 < E I4',.k(X-') -,,, -',k(x)I•-"li'ir,) -

j,kEZ

< C E I>f?•,k(x')-
j,kEZ

+ C 1 I4'j.k(-.C) - ,I.).k(X) I" , I•k(. I)-/ ,(Y)l
j,kEz

(2.11)} : = lJ, +J 2 , say.

The assumption (1.5) then leads to

(2.12) .i, C E,{2Jl2Jx, 2)x'101-[k(I2''' •-kl)]l-"D(12'a-ykl))
iEZ kEZ

i<--o )>ijo
.111 + .J12, say.

Here. since 00
Z ['(j~z - j)I~~(1 2 y kj 44(0) + 2j 10 (t)dt,

k

we have

(2.13) .JI I _ CIx - .r2' • 2j('+e ) < CIx - x .'l+01

J- Ix -•J+o'

Hence, by Lemina 2, we see that, for I > ju,

'[4(12jx'-kl)l'-",,(12jy-kl) < C [t ('12j-' - 2.)1y < 21_l _ + .

Thus, we arrive at

(2.14) J12_< C2,)j0(( t +a,")-('• +e)(1•,), x -''•T• ,)x r[ < C x-:'ia•x-'•'

Ix' -Yj(l+')(ll) - FX- l+p
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By combiniLig 2.I12 )-H 2.14), we obtain

". [ - *r+ •'

with 6 = ca•,. Similarly. we also have

..2 < -- r l

Hence. by applying (2.11), we establish the inequality (b). By symmetry, it is clear that

(c) also holds.

3. Proof of (d). Recall from Lemma 1 that the linear operator T1 is bounded in L2. It

therefore follows that some B > 0 exists such that
2

a),kV),k, < B Z. Ia,,kl
),kEz 2 j.kEZ

for any {aJ,k} E C'4. By setting jk = 9jL-(f, i'/j,t), we obtain

eII~o fl[• < D I'8j, k ý'jk)i' < B2 IOIlecojjfjj2"

j.kELZ

Hence, To is bounded in L2 . This completes the proof of Theorem 1. U

In the proof of Theorem 1, we verify that under the assumptions (1.5) and (1.6), To

is a Calder6n-Zyginund operator. Hence, by a wellknown result on such operators (see

Meyer [51, p. 230), statement (i) holds. In addition, assumption (1.6) implies that

T4(1) = TOG() = 0.

Hence, both (ii) and (iii) also hold (see Meyer [5], p. 237 and p. 239).

To prove Theorem 2, we consider the operator

(POf)X):- 8j'j:Uf , t/•')t00j,kWx.

j,kEZ

A similar discussion leads to the conclusion that the linear operator Pe is bounded in LP

This fact, in turn, implies that for any f E LP and (3 E t' the series

jAkEZ

is convergent in LP. Hence, {1j.k(X)) is an unconditional basis of LP. N
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To Jaap

FRACTAL FUNCTIONS AND SCHAUDER BASES

Z. Ciesielski (*)

1. Introduction. In recent years more and more attention is paid in mathematical
papers to fractal functions and to fractal sets. There are various definitions of those
objects. W assume that a compact set K E Rd+l is fractal, by definition, if its box
(entropy) dimension dimb(K) $ j for j = 0, 1,..., d + 1 and 0 < dimb(K) < d + 1 . In
the same time the function f • Id --. Rd, I = [0, 1], is fractal, by definition, if its graph
F, = {(!, f(1)) : t E IJd} has box dimension satisfying the inequalities d < dimb(rf) < d+1.
For the definitions and properties of lower di_.nm(K) and upper im-'b(K) box (-counting)
dimension we refer to (F]. In case dim.(K)=dim6 (K) by definition dimb(K) is the common
value.

The relation between box dimension of the graph of a function satisfying HJlder
condition is known for years. In particular, it is known that the H6lder condition with
some a, 0 < a < 1, i.e.

(1.1) If(t)- f(t')I < c-t- t'r for tMt' E d

implies that

(1.2) dimb(r/) < d + 1 - a

Our aim is to describe some subclasses of functions f satisfying (1.1) for which equality
takes place in (1.2). The Holder classes, as it was shown in [C1], can be characterized by
means of the coefficients of the Schauder basis expansions, and it seems natural to apply
this tool to solve our problem.

In Section 2 we describe the constructions of the Schauder and Haar bases over cubes
and state the main results on characterization of H6lder classes by means of the coefficients
of the Schauder and Haar expansions. Senction 3 contains the main results on Holder
ubclasses for which we have equality in (1.2).

2. Haar and Schauder bases. The orthogonal Haar functions over I, normalized
in the maximum norm, can be defined by means of the function sign(t). Define

sign(t + 1) - sign(t -
ho(t) = 2

() Z. Ciesieiski, Instytut Matematyczny PAN, ul. Abrahama 18, 81-825 Sopot,POLAND.
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hi(t) = sign(t + 1) + sign(t - -sign(t) for t E R
2

and 2-hi,k(t) = hi(2k(t - 2j+-- 1 )) where j 2k1,.. ,2; k = 0,1,.

The Haar orthogonal system on I with respect to the Lebesgue measure is simply

{1,hi,k, j = 1, 2 k; k = 0,1,...}.

We note also that

supp hi,k (j1) j

Often it is more convenient to index the Haar system as follows: hi = 1 and h, = hi,k
whenever n = 2k +j with some j = 1,...,2k;k = 0,1,...

To define the d-dimensional orthogonal Haar functions over Pd properly we decom-
pose at first the set of multi-indexes Nd, where N = {0, 1, .... }. Using the norm ]
max(Ij,..., ld) we introduce the decompositions

Nd=NoU U Nk where Nk ={l:2k <11 _2k+1},
k>0

No contains I = (1,..., 1) only and

N = U N,,k with V ={,...,d},
I~eC'•

where N,,k = {1 E N 2 : < Ii : 2 '+' for i E e}. Now, the Haar orthogonal functions
over Id are defined as follows: ho(t) = 1 and for I E N.,j

h!(t)= •lhj,-2,,k(tj) I"[ Jhj,..(tj)l.

i e iEv\e

Thus, each hi, for I_ E N.,k , has support which is a dyadic cube. Actually, over IP we are

given 2d - 1 functions orthogonal to 1 i.e. for each e, 0 6 e C DT,

h.(t)j=) Ihi(t) II ho(t,)
sie ie-D\e

and for I E N.,k

hl (t)= h.(2k(t-_ 2j - 1

where j, = 1, - 2k for i E e and ji = 1, for i E V\e . Consequently, the support of hl is the
2j- Idyadic :ube with center at 2 and with edges of length

C .. the following page we present the graphs of the functions he in case d = 2.
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T wo dimensional H aar functions
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The modulus of continuity of f E L' (I") in the LP space is defined by formula

(,.)sup (Jo<lbl<• ~'b

where IhI is the eucleadian norm of b and I (b) =- {4 E/I : + b E I'} . For later use we
introduce the orthogonal projections

QoI = (f,ho)ho, Qjf =

and
Pkf = QoI + + Qkf,

where

(f,g)= f(t)g(t)dt and lf ,= (j if(t)rdt

It should be clear that over each dyadic cube of the k - th generation in Id the the function
Qkf is constant and it is equal to the mean value of f over that particular dyadic cube.
Thus, the Haar orthogonal system {hj I has the norms IIQk lp, 1 < p _< o, bounded by 1.
Consequently, the Haar system is a basis in the space L' , 1 < p < oo. Moreover, we have

(2.1) (2- 1)-'A•-, < I an hn (2, < (24-
D}EN&

where 1 < p < oo, + •_I = 1, aER, and

(2.2) Ak,, = ( Z IanI')

"nENk

Moreover, we know from [C2]

Proposition 2.3. Let 0 < a < I < 1 and let

DEN'

Then

(2.4) w,(f;6)=O(6e) as 6.-+O+

is equivalent to

(2.5) Ak,, = 0(2-*k) as k -c-o.

Moreover, for f E C(Id), 0 < a < 1, and p = co, conditions (2.4) and (2.5) are equivalent.
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To define the Schauder basis over I we start with the function 0b(t) = max(O, 1 --tII
and with the set of D of all dyadic points in I. Define Do = {0, 1}, Dh = Ij :j" =
1,...,2&-1 } and k = 1, 2. Thus

D= UDk,
k_>e

and the Schauder functions over I are defined as follows

0,(t)= (2k(t-r)) for rEDk, k=0,1,...

For the Schauder functions over Id it is convenient to introduce Co = Do, Ck = Ck1 UDk.
Then

Ck' = Ck_- I U Dk,,,

where

Dk,d = {.= (Ti,..., rd) E C&k:3 r, E Dk} and Do,d = Do.

Now,define

(2.6) r.() = II (2k(ti- T,)) for r E Dt,d, k = 0,1,...
IEWD

In the two dimensional case all the basic Schauder functions are obtainable, by suitable
tanslations and rescaling, from functions presented by the pictures on the next page.

The system is called the diamont or multihaffine (cf. [RjSej,[ShJ) basis in the Banach
space C(Id). Some of its properties we mention here. Like in the Haar case we have with
some constant C depending on the dimension only, for 1 < p < oo, the inequalities

(2.7) P < br- 1,kC < Bk,,,

with

(2.8) Bk,,= I L b D r ,

where IDk,dl is the cardinality of Dk,d.



* Two dimensional diamont functions
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The biorthogonal to (4,.(t), L E Dd) system of linear functionals over C(Id) is known
(see e.g. [RI).and for given f E C(Id) and r E Dd the corresponding functionals are
defined as follows:

b.(f) =f () for r E Dod,

and for k > 1
b_(f)= • j (f(r)-f(z!)) for rEDk,d,

•E{I-,1}d

where r' with

E +T+4 -.2k ifr, EDk;
r= tri if riECki.

It is convenient to introduce the finite dimensional projections in the space C(Id)
Rk(f) = Z bt_.(f).4.

LEDk,d

The fact that ( _r E Dd) is a Schauder basis in C(Id) can now be stated as follows:
for each f E C(IT) the series

00

SRk(f)
k=o

converges to f in the maximum norm. Finally we state the main property (c.f. (Cl],
[R],Sh])

Proposition 2.9. Let 0 < a < 1, f E C(Id), and let

f = .

Then, the following conditions are equivalent:

(i) woo(f; 6) =O ),

(ii) max IbI- 0(2--k),
Z.ED&,-

(iii) II! - E i Ri(f)II = o(2-Ok
t_<6
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3. Box dimension of graphs. In this section we are going to apply the Haar and
Schauder bases to compute the box dimension dim4 (rj) for some reasonable subclasses of
the H61der classes on cubes.

Theorem 3.1. Let 0 < a < < 1 and let the function f be given on I" by the Haar
series f=Z j an.hn.

k JJEN&

If

Ak,0 0 = mr&Xlanl = 0(

then
dimb(r,)5 d + 1 -

Moreover, if for some C > 0,
1

Ak,i = jZ aI > C
Nk

then ,_(rf) >_ 1-ý

Corollary 3.2. If there is a positive finete constant C such that
1 1

2,9k <ý 2-kj ,F _ _ % =_ < C. -,

then
d + 1 - # <_ dimsdrf) <5 d + 1 - a.

Note, no continuity of f is assumed in this statement.

Theorem 3.3. Let 0 < a < P:5 1 and let the function f be given on Id by the Schauder
series

If

B, a Di, 0.xlb,.) =,

then ui-m-b(rt) < d + 1 -a

Moreover, if for some C > 0,
11

B k,,l= D.--" •Ib,-I_> •-',
SDik 41 - 2

then
dim(rj) >6 d + 1
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Corollary 3.4. It there is a positive finete constant C such that

1 1 '-' ,,,1

then
d + 1 - 0:< dimb(r) j) d + 1 - a.
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Integrals of subharmonic functions along
two curves

W.K. Hayman
University of York, Heslington, York YO1 5DD, U.K.

Dedicated to Jaap Korevaar on his 70th birthday

1 Introduction

Suppose that Co is the unit circle IzI = 1 and that C is another rectifiable
curve, whose interior D contains IzI < 1. We also suppose that C is not
identical with Co. The length L of C and the area A of D are related by the
isoperimetric inequality

L2 > 41rA > 47r 2, i.e. L > 2r.

Thus fc IdZI> ldzI"

This makes it reasonable to ask the following question. Suppose that F is a
class of functions u(z) defined in D. Does there exist a constant K = K(.F, C),
such that, when u E Y,

f u(z)1dz1 •_ K u(z)jdzj. (1)

We denote by K(Y, C) the smallest such constant K. If K does not exist we
write K(.F, C) = 00.

The above problem was raised by Harold Shapiro [9] in a lecture in York
about 1982 for the class *P = {u I u(z) = IP(z)I}, where P is a polynomial. We
prove Shapiro's conjecture in a companion paper [5] with K = e(4/7r + 3) < 12.
The first proof with an absolute but unspecified constant was given by Garnett,
Gehring and Jones [4). More general results were obtained by Fernandez and
Hamilton (3] and Bishop and Jones [1]. In the present paper we are concerned
with the wider class

S = {u I u(z) is subharmonic (s.h.) in D and

upper semicontinuous (u.s.c.) in D}
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for which the analogue of Shapiro's conjecture does not hold in general. We
also define

S' = {u uESandu>OinD},

W = {u u(z) is harmonic in D and continuous in/},
+ = {u uE'Handu>0inD},

A = {vlv=eu,whereuES}.

It will turn out that we can replace S by S+, W or W in the definition of A
without altering the constant K(A, C) and also that K(A, C) = K(P, C). On
the other hand for the classes Y = S+ or 7W+ the constant K(Y, C) may be
infinite.

The following result was essentially discovered by T. Shell-Small soon after
Shapiro's lecture but never published by him

Theorem I If C is convex K(S+, C) < 2. Given e > 0, there ezists a circle
C, such that K(,S+, C) > 2 - e.

The example of circles shows that the situation is indeed different for S+
and A or P.

Theorem 2 If C is a circle, then K(A, C) < 1, with equality only when C
touches Co.

If C does not touch Co and the domain bounded by C, Co is conformally
equivalent to an annulus 1 < [wI < R, we have K(A, C) = 1IR.

Theorem 2 raises the question of whether (1) holds with K < 1 for a wider
class of functions and curves. This conclusion is false in general even for a
linear polynomial and a convex curve.

Example 1.
Suppose that C is the convex hull of the unit circle together with the

point z = -VI. Thus C consists of the straight line segments sl: from -V/2
to e* 3,i/4 together with the arc 82: z = eW, 101 _< 37r/4 of Co. Let s 3 be
the arc S3: z = e", 37r/4 < 0 < 57r/4 of Co. Then the image of s, by
w = 1 + zVf + z2 /2 = (Z + -2)2/2 = P(z) say is the line segment [-i/2, i/2],
while the image of 83 is an arc joining ±i/2, which is not a line segment. Thus

1= j z + V2-IldzI = dwj <j IdwI = z + 2V2-lldzl,

and K(A, C) > 1.
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The question of the exact value of K(A, C) seems to be quite complicated
if C is not a circle. However the following result settles the value of K(S+, C)
in terms of a conformal mapping.

Theorem 3 Suppose that w = O(z) maps Iwl < 1 (1, 1) conformally onto
D, so that 0(0) = 0. Since C is rectifiable O(z) has an absolutely continuous
eztension 4(e'e) to jzj = 1 and

K(S+,C)-1 = inf 1 Ok(e'9 ) ,(2)

where inf denotes the essential infimum, i.e. outside sets of measure zero.

Conditions for !0'(z)I to be bounded below are given for instance in Pom-
merenke's book [7, Corollary 10.2. p.308]. It is sufficient that there exists a
fixed Dini-smooth curve r with a point P0 on r such that, for every P on
C, there is a rotation and translation r, of r which lies outside D, but such
that the image P. of P0 coincides with P. On the other hand this condition is
"almost necessary". In particular if, at some point P, C has an interior ang]i
of opening greater than ir, we have K(S+, C) = oo.

Since K(A, C) < oo, but K(S+,C) may be infinite we may ask the colTe-
sponding question for the classes

+P={vl v=uP, whereuES+}, and 1 <p< oo.

Example 2. If C is the circle Iw+21 = 4, together with the segment s: [-6, -2],
then K(S+P, C) = oo for p • 2.

We note that if p < q, then S+q C S+P. For if v = uq, where u is s.h. in D,
then v = (uq/P)p. Also uq/p is s.h. in D [6, Corollary 1, p.46]. Thus v E S+P, so
that K(S+P, C) _Ž K($+q, C). Hence it is enough to consider the case p = 2.
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We now define

u.(z) = j2 + x1-"1 log 2 + x1-'', -5/2 < x _ -2 -
u,(W) 0, elsewhere on C,

where 0 < e < 1/4. We extend u, as a bounded harmonic function to the disk
jw + 21 < 4 cut along s. Then u, E S+, so that v, = u, E S+2. Also

1Cv (z)ldzl = 1'/2t-I(logl/t)-3 /2 dt

< I1/ U(log 1/t)-3 /2 dt = 2(log2)- 1 2

But if w(r) is the harmonic measure at the origin of the segment I-r, -2],
then' w(r) = { (tan-' v 4/'_'2 - tan-irr --21' ,• 2-L "_ as r -+ 2. thus
we have as f -+ t

./2l5/ 1 3dr

U,(0) = 12 ,,(-r)dw(r) -+ /00.12 (r - 2)1/21 log(r - 2)13/4 4ir(r - 2)1/2

Thus by Schwarz's inequality

f2wv,(ee)de = J2w u,(ea) 2do > I- {ffrU(eie)d~6}

= 21ru.(0)2 -+o0 as e -+ 0.

Thus (1) cannot hold for any K. We note that C is not a Jordan curve, but
by approximating C from inside the cut disk we can obtain a Jordan curve C'
with the corresponding property.

Finally we state the following result which was mentioned earlier

Theorem 4 We have for every rectifiable curve C

K(S+, C) = K(WH+, C) (3)

and
K(A, C) = K(P, C). (4)

'cf. Lemma 1 below.
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2 Proof of Theorem 4

We suppose that (1) holds for all u in WI(C) with a certain constant K and
deduce that (1) also holds in the larger class S+(C) with the same K. Suppose
then that u E S+(C). Then i'(C) = u(C) is u.s.c. and O(C) > 0 on C. Thus [6,
p.5] there exist on C functions a,(C) continuous w.r.t. C and strictly decreasing
with n such that

0.(0)-+0¢(0) asn -4 oo.

We denote by YF(C, V') the class of functions u in S+(C) such that

u(() < O(C) on C.

Let U,,(() be the harmonic extension of tA(•) into D [6, p.70]. Thus
U,,(z) E W+(C). By the maximum principle U,(z) decreases with n in D
and, since U,(z) > 0, U,(z) -- U(z), where U(z) is harmonic in D [6, p.37].
We have

u(C) = O(C) < 0.(() = U,(() on C.

Thus by the maximum principle

u(z) •_ U.(z) in D.

Letting n tend to oo we deduce that u(z) <_ U(z) in D. Also U E .F(C, V). In
fact U(z) is harmonic in D and U(z) <_ U,(z) so that, if C E C,

limU(z) • limu(Z) =

This is true for every n so that

l-•U(z)< ()

If we define Uo(z) in Li by

Uo(z) = U(z) in D, Uo(C) = O(C) on C,

we see that Uo(z) is u.s.c. in D, harmonic in D and Uo(C) < V,(() on C, so
that Uo(z) E .F(C, 4), while if u E F(C, 4) we have u(z) < Uo(z) in D.

Thus by hypothesis, and since U((z) E Wl+(C) we have

f~u(z)IdzI • J U(z)IdzI •5 U.(z)ldzl •5 KJ U.(C)IdCI = KJ4'n.(()Id~l.

Letting n tend to oc, we deduce that

f u(z)ldzl < Kj V'(()Idld = Kf u(()IdCl.

75



Thus (I) holds for all functions in S+ (C) if it holds for all functions in
Ri+(C). The converse is obvious, since W+(C) C 8+(C). This proves (3).

We next prove (4). Suppose that (1) holds for all functions of the form

u(z) = ev(z) (5)

where V(z) E N+(C). By considering V(z) - m instead of V(z), where m
is the lower bound of V(z) in 1), we deduce that (1) also holds whenever
V(z) E N(C).

We proceed to show that the conclusion also holds whenever V(z) E S(C).
The argument is similar to that given for the proof of (3). Suppose in fact
that v(z) E S(C). Let ik,,(() be a sequence of continuous functions decreasing
to v(z) on C. Let V0(z) be the harmonic extensions of 0,,(C) to D. Then by
hypothesis (1) holds for U,(z) = evn(z). By the maximum principle we have
v(z) < V,,(z) and so u(z) = el(z) < U,(z) in D. We deduce that

u(z)Idzl •ý U,(z)fdzI •5 KJ eVI.(z)IdzI.

Letting n tend to oo we obtain

JI 0 u(z)ldzl :5 KJ ev(z)IdzI = KJ u(z)Idzl.

Thus (1) holds whenever log u(z) E S(C) if it holds whenever logu E N+ (C).
This shows that we obtain the same constant K(A, C) if we replace S by S+,
R or li+ in the definition of A. If P(z) is a polynomial then log iP(z)I is s.h.
in the plane and this yields K(A, C) > K(P, C).

To complete the proof of (4) we now show that K(.A, C) _< K('P, C). To
do this suppose that (1) holds with some constant K whenever u(z) = IP(z)J
where P is a polynomial. We shall deduce that (1) still holds when

u(z) = eh(z) (6)

where h(z) E li(C) and so, by what we proved above, whenever u(z) E A.
Suppose then that h(z) E Ki(C). Then, by a theorem of Walsh [11], given a
positive e, there exists hi(z) harmonic in a simply connected neighbourhood
N of D = D U C, such that

Ihi(z) - h(z)I < e on D.

The function hi(z) has a harmonic conjugate h2(z) in N, so that

f(z) = exp(h1 + ih2) (7)
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is regular in N and in particular on D. Thus by a further theorem of Walsh

[10] we can, given q} > 0, find a polynomial P(z), such that

If(z) - P(z)I < t onD).

Let m, M be the minimum and maximum respectively of If(z)I = exp(hl) on
D. We assume that 417/m < e < 1, so that IP(z)l > m/2 on D. Also

IIf(z)/P(z)l - 11 !_ If(z)/P(z) - 11 < i/IP(z)l < 27/m < e/2 < 1/2.

Thus on D we have

Ilog If(z)/P(z)[I < 211f(z)/P(z)I - 11 < e,

i.e. e-fe hi(z) < IP(z)I < ete hi(z).

On combining this with (6) and (7) we obtain

e-2e U~z) < IP(z)l < e~u(z).

Since (1) holds for P(z) we deduce that

C.2E Ip(z)IIdZI c e~ IP(z)IldzI Ke Eu(z)IdzI.

Since e is an arbitrary positive number, we deduce that u(z) satisfies (1) so
that (4) holds and Theorem 4 is proved.

3 Proof of Theorem 3

Suppose that C is a rectifiable curve and that

W =(Z) = Z"

n=I

maps IzI < 1 (1, 1) conformally onto D. Then by a Theorem of F. and
M. Riesz ([8] see also [2, Theorem 3.3, p.50]) O(z) has a continuous extension
to IzI < 1 and O(e') yields an absolutely continuous parametrisation of C. Let
z = O(w) = 0'-(w) be the inverse map, let r be an arc of C and let w(w, r)
be the harmonic measure of r. Thus w is harmonic in D, bounded in D and
continuous except at the two endpoints of r. Also w = 1 at interior points of
r and w = 0 at interior points of C \ r.
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The harmonic measure of the corresponding arc

z = ei0, :15 0< 02

of Co is given by

= Iarg (z e2) +61;- ,
- r z-eis, ] 2

since this function is clearly harmonic and bounded in Izi < 1 and has the
right boundary values. Also since harmonic measure is conformally invariant
it follows that

1 / {) (}- _{___ } •{ '} 1/,
W(,Ir) = 1Im log O(W)- O(W-) (Ip(W{) / (8)

where wI, W2 are the endpoints of r, when F is described in the anti-clockwise
sense.

We recall that if u(w) E 1W+(C) then, for w E D, u(w) has the representa-
tion [6, p.114]

u(w) = f u(W)dw(w, W).

Here w(w, W) is the harmonic measure of the arc (Wo, W) of C, where W0 is
a fixed point and W a variable point of C. Also, since u(w) is harmonic in
IwI < 1 and continuous in IwI <1 we have

JU(Z)IdzI = f2 u(e"9 )dO = 21ru(O) = 27r f•u(W)dw(O, W).

We now deduce from (8), writing w = 0 and w2 = W that, almost every-
where on C

dw(0, W) = -Im dlog {,O(W)1/2} IM li(rdW
?r 21r Ob(W)
1 V"'(W)dW 1l'(W)IdIWI,

-2iri Ob(W) 27

since IJ(W)I and so log IJ(W) I is constant on C. Thus

2irf u(W)dw(O,W) = f u(W)j0'(W)IIdWj •_ Kf u(W)VdWI,

where1
K = sup I '(w)I = sup 1 (9)

tuEC SEC* 0WI'()
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Here sup denotes the essential supremum, i.e. ignoring sets of measure zero.
This proves (1) with K given by (9), i.e. (2).

It remains to show that the inequality is sharp. We recall that Ob(z) has a
continuous extension to Izi <_ 1, that O(es) is absolutely continuous and that
the length of the arc {f(ei'), O(eG2 )} is given by

4(01,02) = '(e'#)IdO.

Let p be the essential infimum of IJ'(z)l on Izi = 1. Then

10ý(e°) I >p

almost everywhere but 1' (e')j < p + c on a set of positive measure. Since
14/(ele)l is the derivative of its integral almost everywhere we can find 80 and
a positive h such that 10(e'eo)I <p + e and

l(0o - h, 0o + h) = jo-h I,(e'i)IdO < (u + e)2h. (10)

We write 01 = 00 - h, 02 = 00 + h, w1 = O(e/°N), W2 -= O(e/•2) and define
the function u to have boundary values 1 on the arc wl, w 2 of C and zero on
the complementary arc of C. If u is the bounded harmonic extension of these
values onto D, then u is harmonic in D, 0 < u < 1 in D and u is u.s.c. in D
if we define u(wi) = U(W 2 ) = 1. Thus u E S+(C). Also

u(w)ldwl - Idwl -= 1(01,02) < (1A +,e)2h
W1

by (10), while

L u(w)ldwl = 21ru(0) = 2h.

To see this we note that w(w), given by (8) with w1 = e'91, w2 = ei92 has the
correct boundary values and so coincides with u(w). Thus

Ju(w)IdwI < (p + c) u(w)ldw,.

Here e is an arbitrary positive number. Thus (1) cannot hold with K < I/p
if u > 0 or with any positive constant if p = 0. This completes the proof of
Theorem 3.
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4 Proof of Theorem 1
Theorem 1 could be deduced from Theorem 3 but it is as easy to give a direct

proof. We need a Lemma on harmonic measure in a semidisk.

Lemma 1 Suppose that D is the semidisk

IwI<M,u>O, wherew=u+iv.

Then if E is a set on the imaginary axis of length I and w = w(E, D) is the
harmonic measure w.r.t. D of E at a point u, where 0 < u < M, we have

•<m 1-_U)J
7ru

Suppose first that E is the segment OA of the imaginary axis, where 0 is
the origin, A the point ia and 0 < a < M, and let A' be the point iM2 /a.
Then if P is any point of D, we have

1

w(P,E) = -{ angle OPA - angle OA'P}.

In fact the right hand side is 1 on the segment OA and zero at other points
of the segment {-iM, iM}. If P lies on Iwj = M the triangles OPA and OA'P
are similar. Thus w(P, E) vanishes on the semicircle fwl = M, u > 0 also and
so has the required boundary values. If P is the point u on the real axis we
deduce that

w(P) Itan 1 (a) -tan- u)
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Differentiating w.r.t. a, we see that a small segment of length ba at a has
harmonic measure approximately

=a u M2U a uM
7r ia2 +U2 a 2 u2 + M 4  - 1•(tI

since

U2 M 2u 2  
-u

2 
_ a 2(u 6 

-M
6 ) + a4 u 2 (u2 

- M 2)

a2 + u2  a2u2 + M4  M2 M2(a2 + u2)(a2u2 + M4)

Integrating the characteristic function of E w.r.t. dw and da we deduce Lemma
1.

To complete the proof of Theorem 1, we suppose that the closed curve C
contains Iwi < 1 and lies in (w( < M12, so that M > 2. Let P, Q be two
neighbouring points of C and let L be the line through PQ. Let N be the
foot of the perpendicular from the origin 0 to L and let Do be the semidisk
which contains the origin and is bounded by L and the circle S of centre N
and radius M. Since C lies within distance M/2 of 0, and so ON < M/2, C
lies inside or on S except for the arc PQ.

The segment PQ lies in DO but the rest of L lies outside Do. Also PQ
divides D into (at most) two domains of which the domain D1 containing 0
lies in Do. If w is the harmonic measure of the arc PQ of C w.r.t. D and wo, w1
are the harmonic measures of the segment PQ w.r.t. Do and D, respectively
we see, by comparing values on the boundary of D1, that

w(w) _• w1(w) _• wo(w) in D1.
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We apply this inequality at w = 0. Using also Lemma 1 we obtain

w(o) <P{ 1 ON}

If N lies on the chord PQ we have ON > 1 - 6, where 6 is the length of PQ
and otherwise N lies outside D, so that ON > 1. Hence, if I is the length of
the arc PQ of C, we deduce that

W(O)•!{i-L T-}•i{'M"

if c is a preassigned positive number and 6 is sufficiently small depending on e.
By addition we deduce that, if y is any arc of C having length I and harmonic
measure w(O) at the origin, then

(O __l_+_{1 1~ } 1
W(O) - andsow(O) < (1 - ),

since e can be arbitrarily small.
We now denote by w(z) the harmonic measure at the origin of an arc [zo, z]

of C, where zo is a fixed point of C. Now if u E h+ (C) we have

u(z)ldzl _ rm_2 1 u(z)dM(z) = M 2- 2(M --) M2 u(z)ldzl.

Using Theorem 4 we deduce that (1) with K = 2(1 - M- 2 ) holds whenever
u E S+(C).

To complete the proof of Theorem 1 we calculate K(S+, C) when C is a
circle on the points -r, R as diameter, where 1 < R < r. The function

w=-z wherea= - b= 1 +
a + bz' 2L r) 2 -r

maps Izi < 1 onto the interior D of C. Also for IzI = 1

dwl = a > a R(r-R)

dz =a + bz, ->(a+ b)2 = 2r

with equality when z = 1. Thus by Theorem 3

K'S~C' - 2rK(,S+, C) = 2~r-

-R(r -R)*

Choosing r large and R close to 1 we can achieve K(S+, C) > 2 - e. This
proves Theorem 1.
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5 Proof of Theorem 2

We proceed to calculate K(A, C), when C is a circle. Suppose first that C
contains IzI < 1 in its interior and that P(z) is regular in D and continuous in
A. We define

F(z) = j P(C)dC

so that F(z) is continuous in D and F'(z) = P(z) in D. We choose a bilinear
map

z = (w) (11)
which maps the circles ItwI = 1, R onto the circles C0 , C respectively, where
R > 1. Then R is the module of the doubly connected domain bounded by C0
and C. We define f(w) = F[l(w)]. Then

If'(w)jjdwi=j IF' [(w)]l T1 Idwl F()lz
fl1= 1dZ= I ldl=/zIF'(z)lldzl

and

1L.=R f'wIjw = IF'(z)jldzl
similarly. But since u(w) = If'(w)l is s.h. we have [6, p.64]

j __ ff'(w)jfdwj = 2 If'(e'e)IdO-< 2wJ If'(Re'9 )ldO = I =f'(w)Ildwi-

This proves (1) with K = 1/R as required. We note that equality holds if
and only if If'(w)I is harmonic. Then If'(w)I is constant, f(w) = aw + b,
F(l(w)) = aw + b. Then F(z) = al-'(z) + b maps C0 , C onto concentric
circles. Thus K(A, C) = 1/R in this case.

Suppose next that C touches Co. Let r0 be the radius of C and let C,. be
a circle concentric with C and of radius r, where r > ro. The module of the
region bounded by Co and C, tends to 1 as r -4 ro. Thus by what we proved
above we can, given e > 0, choose r and a polynomial P(z) such that

./co IP(z)IldzI > (1- e)Jc, IP(z)lldzl >_ (1- E)f IP(z)-,dEI.

Thus K(A, C) > 1 - e and so K(A, C) > 1. On the other hand we have for
every polynomial P

fc. IP(z)lldzl :-!c IP(z)lldzl

by what we have already proved. Letting r tend to r0 we obtain

f P(z)j~dzj :5. J~P(z~jdzl.
Thus K(.A, C) < 1 and so K(A, C) = 1. This completes the proof of Theorem
2.
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Abstract

We examine numerical errors in finite-difference schemes for a linear wave-

propagation problem from the point of view of how the propagation time influ-

ences the selection of the mesh size. We find that for a difference scheme with

order of accuracy p and a long propagation time t, the mesh size should be scaled

proportional to t-1 /P.

It is well known (5] that finite-difference approximations to wave equations introduce

numerical errors. This effect has usually been studied in terms of the behavior at fixed

location and time of the numerical solution as the mesh size tends to zero. The question we

address here derives from the conflict between the facts that the numerical errors increase
with distance, while phase information is relevant modulo 21r. We therefore address the

following question. If one wants to compute a wave front over longer times or distances,
by what ratio should the mesh size be decreased in order to maintain the same degree of

accuracy?

We confine our attention to finite-difference methods for the uni-directional wave equa-

tion

atu + O8u =0 (1)

on the set -oo < x < oo, t > 0 with initial data u(x,0) = f(x). It is easily seen by

substitution that the solution of (1) is

u = f(x - t). (2)

In physical applications involving wave propagation one is interested in hyperbolic systems,

not just the simple equation (1). The significance of equation (1) is that it may be viewed
as the projection of a hyperbolic system Ot u = A 0.u onto the subspace defined by a charac-

teristic. Thus, our argument applies just as well to numerical methods for the acoustic wave

equation, Maxwell's equation, or the equations of linear elasticity in 1 spatial dimension.

Because the wave speed for solutions of (1) is 1, the distance a wave propagates is equal

to the travel time. In physical applications one usually thinks in terms of propagation dis-

tance, but our analysis is carried out in terms of travel time because this is more convenient
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for the analysis. Our principal result is that if the difference scheme has order of accuracy p,

then for long. propagation times t the mesh size h should be taken proportional to lit'/P.

Consequently, it is wise to use difference methods of high accuracy (large p) when computing

wave propagation over long times. At the end of the paper we illustrate our result with a

computational example. Our result on the mesh size is asymptotic in nature, requiring the

propagation time (and distance) to be large. The object of our example is to provide some

insight into how large the time must be before the asymptotic result is valid. We find that

for the Lax-Wendroff finite-difference method the asymptotic estimate is quite good at times

as short as those needed to travel a distance of only 2 wave-lengths.

It is possible to give several heuristic arguments for our result. The simplest of these

is as follows. The statement that the order of accuracy is p is equivalent to saying that at

each time step the numerical error is of a size O(hP+' ). If there is no cancellation of errors,

then after n time steps the accumulated error will be O(nhP+'). For stability reasons the

time step At is related to the spatial step h by

At=Ah (3)

with constant A. Therefore, the total time t is given by

t = nAt = nhA. (4)

That is, the total error at time t should be O(thP), and this error will be constant if h , t-1/P.

We show that this result is correct, without the assumption of non-cancellation of errors.

Another heuristic argument for our result is based on the group velocity of waves in

finite-difference grids. (Group velocity was very effectively used in [5] to study other proper-

ties of difference schemes.) The flaw in this approach is that the concept of group velocity is

derived from an asymptotic analysis based on the method of stationary phase. The method

of stationary phase is appropriate for nondissipative difference schemes, in which case the

stationary points are also saddle points. The difficulty with this type of argument is that

the method of stationary phase breaks down when saddle points coalesce, and we shall see

that for p > 1 a wave front produces such a coalescence.

Background on numerical analysis. The principal tool for the analysis of finite-

difference schemes for wave-propagation problems is the Fourier integral representation [4].

It is known that the appropriate tool for uniform asymptotic analysis involving a coalescence

of saddle points uses a mapping to a generalized Airy integral. We therefore begin our

discussion with a review of the connection between our problem and Airy integrals.

For the difference equation we introduce a uniform mesh with spatial step size h and

time step At related by (3). As is customary in computational wave propagation, we let

h and At vary, while keeping A fixed. The spatial grid points are therefore xj = jh, with

j = 0, ±1, ±2, ... , and the temporal grid points are t,, = nAt with n = 0, 1, 2, .... Let
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un denote the approximation to u at time t,. We consider difference schemes for (1) of the

form 00

u,+= E cjTVu,n, (5)
j=--0

where T is the translation operator Tun(x) = un(x + h). For the sake of convenience, we

restrict our attention to explicit difference schemes, so that only a finite number of coefficients

cj in the sum (5) is nonzero. We require the coefficients cj to be real constants. The c3
could depend on the mesh size h, but this would not normally occur in finite-difference

approximations to (1). We take the natural initial condition for (5), that uo = f at points

on the spatial grid. Note that the difference scheme (5) need not be restricted to the grid

xj = jh, but that it makes sense on the entire real line. This point is important in our

discussion of the effect of varying the mesh size.

Our analysis of the difference scheme (5) is based on the Fourier transform00
ui. = un(x)exp-ix8} dx (6)

with inverse Fourier transform

u"(X) = g dexpIix} (7)

We assume that these integrals make sense, that is, that the integrands are Lebesgue in-

tegrable. Because the Fourier transform of Tu is eth!ii(•), an application of (6) to the

finite-difference equation (5) shows that if un has a Fourier transform, then

i.÷l =

where
F()= cj exp{ijt}. (8)

The function F is the symbol of the difference scheme, and for explicit schemes (5) F is a

trigonometric polynomial. From (8) it follows that

S= F(ht )niio(t). (9)

We need to define the order of accuracy of the difference scheme (5). This in turn

is defined in terms of the local truncation error, which is the amount by which a smooth

solution of (1) fails to satisfy (5). The first step in obtaining the local truncation error is a

formal expansion of a solution u of (1) into Taylor series

Tju :-z 2aqU. (10)
lc=O
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The right-hand side of (5) therefore takes the form

S : (jh)k --.-k"U(11)

Here and in the rest of this paper, we take (jh)k = I when j = 0 and k = 0.

For the left-hand side of (5) we use the Taylor series

u(xt+Ah) (Ah)k ktU. (12)u~x~t +k!
k

If u is a smooth solution of (1), we may differentiate (1) repeatedly to obtain

, =u = (-1)k O~u. (13)

Upon combining (12-13), we find that

u(x,t + Ah) - Z (-Ah)kO! u (14)
kk

The order of accuracy of the difference scheme (5) is determined by comparing consecutive

terms of the series (11) and (14).

Definition. Let p be a positive integer. The difference scheme (5) is said to approx-

imate (1) with order of accuracy p if the terms with k = 0, ... , p in equations (11) and

(14) are equal and the terms with k = p + 1 are not equal. That is, order of accuracy p is

equivalent to the two conditions

ZjkCj= (A)k, k=0,...,p, (15)

and

ZjP+',c. 0 (-A)P+'. (16)

The connection between the symbol F and the order of accuracy is contained in the following

lemma.

Lemma 1. If the difference scheme (5) approximates (1) with order of accuracy p,

then there exists a nonzero coefficient ap+ i such that the Maclaurin series of log F takes

the form

log F(ý) - -iAý + ap+ I l + o(1 1 +2). (17)

Remark. There would be no numerical errors if we had log F(l ) =

8S



Proof. This is classical numerical analysis, see Richtmyer and Morton [4, p. 68], but

we include a proof for the sake of completeness. By (8) the Maclaurin expansion of F(l) is

k•

Note that the relation (15) with k = 0 implies that F(0) = 1. It now follows from (15-16)

that

F(•) -k! + ap+jP+1 + O(tiIP+2) (18)
k=O

with ap+l 0. The lemma now follows upon comparing this series with the Maclaurin series

for the exponential of the right-hand side of (17). Observe that the sum in (18) is taken up

to k = p + 1 and that ap+l in (18) is identical to ap+1 in (17).

Wave fronts and uniform asymptotics. We begin our analysis by writing the

solution u, to (5) as the inverse Fourier transform to (9),

1 0
u,(X) = f ( )exp{nlog F(ht) +ixý} dt. (19)

Let us consider the various parameters. In most studies of convergence of difference schemes

one keeps t fixed, with the constraint (4) and with h -- 0 and n -+ oo. We maintain (4),

but we let x and t go to infinity along rays

X = wt.

The parameter w represents a propagation speed in the grid. In terms of this notation we

find that
un(x) = 21r- f (t)exp{t4)(t, w,h)} dt (20)

with
4(tw, h) - log F(ht) + iwt. (21)

It follows from (17) that the first few terms of the Maclaurin series of t are

1'(t,w,h) = i(w - 1)C + ap+,h-PP+l + a+2hP+p + O(h 21p+3 ). (22)
A A

A saddle-point analysis of the asymptotic behavior as t -4 oo of the integral (20) would start

with the solution of the equation

O wt h) = 0

to determine the locations of the saddle points ý. It is clear from (22) that Oft has a zero

of order p at • - 0 when w = 1. But w = 1 corresponds to propagation at the speed 1,

which is the speed of most interest for solutions of (5). Thus, the analysis of the asymptotic
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behavior near a wave front of the integral (20) as t -- oo involves the coalescence of p saddle

points at t =. 0. This coalescence of saddle points implies that we cannot use an argument

based on group velocity to analyze behavior of (20) as t --+ oo.

We remark that on the basis of (20) and (22) one might expect to have the approxima-

tion

u1. (x) ;z )exp (i x )+ ap+lthP (23)

This gives yet another heuristic argument for saying that the numerical error for large values

of t is O(thP). Note also that the left-hand side of (23) is the solution of the partial differential

equation

OtU=-0U ap+ 1 hP OZ+ 1 u (24)

with initial data u(x, 0) = f(x). The approximation (23) is a heuristic widely used in nu-

merical analysis in the equivalent formulation (24), and it is called the modified equation [6].
It happens, however, that (23) is valid only under very restricted conditions on the size of

Ix - tI because of the influence of the neglected terms in the series (22) when thP+i I'P+2 is
not small.

What is needed to analyze the asymptotic behavior of the integral (20) as t -+ o0 and
h -+ 0 is a method which is uniform with respect to coalescence of saddle points. Such a

uniform asymptotics may be done, and it is based on the mapping

S= O(C, t, w, h) (25)

from the Weierstrass preparation theorem [3, pp. 144-146] of ti to a polynomial

%F((,t,u.,h) = j-1 -
+ 1 + Zk(t,w,h)Ck.

k=O

To be specific, the mapring (25) is bijective in a neighborhood of (t, w) = (0, 1) and takes

t4 to the canonical form

t -t(t,w,h) = 'P((,t,w,h). (26)

The asymptotic behavior of (20) as t -+ 0o is obtained in terms of a sequence of polynomials

Pm of degree p - 1 in C obtained as remainders in a division processes. The initial step is

Sh)) = Po - Q1 OC IF.

Subsequent remainders Pm are obtained by dividing the derivative of the quotient Q,,, by

aOC,,, = P. - Qm.+i OCT (27)

We are now ready to state a lemma on the asymptotic behavior of (20).
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Lemma 2. The asymptotic behavior of the integral (20) as t -- oo which is uniform

with respect to h in in a neighborhood of 0 and w = x/t in a neighborhood of 1 is given by

the formal expansion
u1(x) Pm expfI} d(.

Here, P, is defined by (27) and r is a path in the complex plane determined by the map-

ping (25).

Proof. This result is classical asymptotic analysis, and a proof may be found, for

example, in [2, pp. 457-458]. Formally the asymptotic expansion is obtained by making the

change of variables (25-26) and sucessively performing the division (27) and integrating by

parts.

We remark that Estep et al. [1) have also applied Lemma 2, but to a different problem

in numerical analysis. We now apply Lemma 2 to prove the following theorem.

Theorem. Suppose that the difference scheme (5) is stable and approximates (1) with

order of accuracy p for some positive integer p. Suppose also that the temporal mesh size

At is tied to the spatial mesh size h by the relation At = Ah for some positive constant A.

Then in order to maintain an error bound

sup fu,,(x) - u(x,t)I < E
X

with t = nAt, one should select the mesh size h according to

h const
til/p

Proof. Let us define a parameter/3 by the relation

h3 = --t (28)

Note that the inclusion of the mesh ratio A = At/h in the definition of /3 simplifies some

of the formulas which appear later. By Lemma 2 the proof of the theorem is reduced to

investigations the coefficients 7k and the mapping defined by (25). In particular, we show

that for large values of the time t, the coefficients 11k, and the mapping (25) depend to first

order only on the parameter /3 = hPt/A and on the distance to the wave front x - t.

The cases p = 1, p = 2, and p > 2 are different, so we treat them separately, starting

with p = 1. With the notation (28) it follows from (22) that the mapping (25) takes the

form
¢2t4(•,x/t,h) = i(z - t)• -+/3a2 •2 +- O(h[•[3) =- +• 7[-". (29)

That is, for p = 1 the canonical form is a Gaussian instead of an Airy function. It is clear

that as h -- 0 the function O8 (t, z/t, h) has a zero to given by

to -- i(t - x) + O(h). (30)
2/3a2
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The value of 7o such that f = Co is mapped by (29) onto C = 0 is therefore given by

o (X - 0a2 + O(h) (31)

70= 40a2

as h -+ 0, and the mapping (29) takes the form

S= V 2x/ '2(t - tO ). (32)

For p = 1 it is clear from (30) that to first order in h the mapping (32) defined by (25-26)

depends only on 3 and z - t. Furthermore, we see from (31) that the same is true of '0o.

This proves the theorem for the case p = 1.

For p > 2 we perform the first step in the construction of a special case of the Weierstrass
mapping. Specifically, we show that for p > 2 the relation (26) as h -+ 0 may be written in

the form

C = 'c + pht 2 + O(h 2 ) (33)

with
re = ((p + 1))3ap+,)1/(P+l) (34)

and
O-ap+2 

(35)/z= p + 1)r.P"

In fact, a use of (33) to replace C in the right-hand side of (26) leads to

XP+ 1 e+ 1 gi - kikltV(F, x/t, h) = - + hKP:/sa~ 2 + Z "k{Kk + hk,.sn-l k+l} + O(h2 ). (36)
p+ 1 k=0

We equate terms of the expansion (36) with the corresponding terms from the left-hand side

of (22),

tlý(t, x/t, h) = i(x - t)t +i3ap+iQP'+ + O3ap+ 2h p+2 + O(h 2I11p+3 ). (37)

The tP+l.terms give the value (34) of K, and the htp+2 -terms give the value (35) of ps. From

the lower-order terms we find that

O0, i(X - t) 72 (38)
K K

and yjk = 0 for k = 3, ... , p - 1. Again we see that up to terms of order h, the mapping

(33) and the coefficients 7k depend only on the parameter /3 and the distance x - t to the
wave front. This proves the theorem for the case p > 2.

The case p = 2 differs from p > 2 in that in place of (33) we use

C = 6h + c+ pht 2 + o(h 2 ).
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Fig. 1. Wave pulse at time t = 18.

Comparison of the terms of the power series of both sides of (26) again yields the values

(34) and (35) (with p = 2), as well as the value (38) for 71. What is different is that the

terms in hý2 and the constant terms give the values

8 -- 1= A and yo = -'y 16h.
K2

Once again, we find that for p = 2 the mapping and the coefficients -tk depend up to order

h only on the parameter 0 = hPt/A and the distance x - t to the wave front. This completes

the proof of the theorem.

Numerical example. We illustrate the theorem by some computations with the Lax-

Wendroff scheme [4, p. 302]

Un-1 1 A(1 + A)T- 1 u, + (1- A2)u - A(1 - A)Tun. (39)

The intial data is

u(x,0) = f(z) = exp {-(x - XO) 2 } sin{2irx}, (40)

This choice of initial data produces an oscillatory pulse, with the oscillations having period 1,

and this period serves as a natural time scale. The solution is a translated pulse as shown
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t h Error

2 1/27 0.02539

8 1/54 0.02552

18 1/81 0.02554

Table 1. Dependence of accuracy on mesh size and distance.

in Fig. 1 at time t = 18. The computations were performed on a bounded interval 0 < x <

X = 25, and we set Z0 = 2.5 in (40). For the boundary condition at z = 0 we set u = 0

for both the partial differential equation (1) and the difference scheme (39). The difference

scheme (39) also requires a boundary condition at the right-hand boundary x = X. We

rather arbitrarily chose un(X) = 0 and stopped the calculation before the oscillatory pulse

reached x = X. We chose the value A = 0.9 because the stability requirement for (09) is

that 0 < A < 1.

It is known that the order of accuracy of (39) is p = 2 [4]. According to the theorem,

the numerical error for t > 1 should remain nearly constant if ht1'/2 is kept constant. This

effect is illustrated in Table 1, where each case has ht'/ 2 = V,/27. In this table the column

labelled 'Error' is an approximation by the trapezoid rule of the relative error in the L 2-norm

I1U, - Ul1
Hull

where the norm is taken at fixed time

I1u112 = U(,t)12 dx.

In Fig. 1 we display only the true solution u at time t = 18 and the numerical solution with

spatial step size h = 1/27. The numerical solutions with step sizes h = 1/54 and h = 1/81

are not shown, because they are nearly indistinguishable from u.
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Uniform multi-parameter limit transitions in the Askey tableau

Tom H. Koornwinder

Dedicated to prof. Jaap Korevaar

1. Elementary limit formulas

We consider the classical or& ogonal polynomials as monic polynomials pn (Z) = Xn+ terms
of degree less than n. We have

* Jacobi polynomials p$a'/)(z) with respect to weight function (1 - x)" (1 + x)O on
(-1, 1);

* Laguerre polynomials l•(x) with respect to weight function e- za on (0, co);

"* Hermite polynomials hn(X) with respect to weight function e-_ 2 on (-co, oo).

Note that, for a -+ oo, the rescaled Jacobi weight function (1 - x2/a)y on (-a 1, al ) tends
to the Hermite weight function e-_ 2 on (-oo, oo). Accordingly we have the limit formula

lim an/2p(,')(x/a1) = hn(x).
a -400

Also, for 0 -* 0o, the rescaled Jacobi weight function x' (1 - x/•)0 on (0,3) tends to the
Laguerre weight function x'e-z on (0, oo). Accordingly we have the limit formula

lim (-,3/2)np (n'O)(1 - 2x//3) = fa(x).
03-+00nn

This can be graphically indicated in the (a,O)-parameter plane extended with the lines
{(a,3) I a = co, -1 < 3 < oo} and {(a,/3) I -1 < a < oc, 0 = oo}. When we start with
a point (a, a) then we can draw a diagonal arrow to the (Hermite) point (oo, oo) and a
vertical arrow to the (Laguerre) point (a, oo).

The celebrated Favard theorem states that {Pnln=0,1,2.... is a system of monic orthogo-
nal polynomials with respect to a positive orthogonality measure if and only if a recurrence
relation

xpn(X) =p.,+()+ Bp,()+Cnpn,-(), n= 1,2,..., (1.1)

xpo(x) = pi (x) + Bopo(),

po W = 1,

is valid with C,, > 0 and Bn real. Below, when we will give this recurrence relation with
explicit coefficients then we will silently assume that the case n = 0 has the same analytic
form as the case n > 0, but with the term Cnpn- 1 (x) omitted.

If the coefficients Bn and C,, are given then pi, is completely determined by this recur-
rence relation. In particular, if B, and C, would continuously depend on some parameter
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A then p,, (x) will also continuously depend on A. For example, Hermite polynomials satisfy
the recurrence relation

xhn(x) = h,,+1(x) + ½nhn-i(z). (1.2)

Now consider rescaled Laguerre polynomials

p.( ) = p.(; a,p,a) p, tn(p- x - a).

From the well-known recurrence relation for Laguerre polynomials we find for these rescaled
polynomials:

xpn(z) =p.+(x)-p(2n+a+ 1 +a)pn(x)+p2n(n+a) pI(x). (1.3)

We would like to make the rescaling in such a way that, as a -4 oo, p,(x) will tend to
h,,(x). It is easy to see how to do this when we compare (1.2) and (1.3). Put p := (2a)-f,
a := -a. Then (1.3) becomes

Pn+I (x) - (2a)- (2n + 1)p(x) "+ n(n +a)
2a

The recurrence coefficients now tend to 0 resp. in as a -+ 00. Hence pn(x) -+ h,(x) as
a -4 o0, i.e.,

lim (2a) -½ 21((2.)2X + a) = hn(W).

Thus, in the extended (a, 3)-parameter plane we can also start at a Laguerre point
(a, oo) and draw a horizontal arrow to the Hermite point (o0, oo).

2. Uniform limit of Jacobi polynomials

It is now natural to conjecture that we might also make these limit transitions in the param-
eter plane in a more uniform way, i.e., to make such a rescaling of the Jacobi polynomials
that they depend continuously on (a, 3) in the extended parameter plane and reduce to
(possibly rescaled) Laguerre and Hermite polynomials on the boundary lines and bound-
ary vertex at infinity, respectively. For this purpose we consider Jacobi polynomials with
arbitrary rescaling:

pn(X) := ppn 'a)(p-l-a). (2.1)

These polynomials satisfy recurrence relations (1.1) with

4n (n + a) (n +/3) (n + a +,3) p2 a3 (a +3)
(2n + a +3-1) (2n + a +,3) 2 (2n + a +/3+1) (a +03)4 (2.2)

4n (1 + n/a) (1 + n//3) (1+I n/(a +-3))

(1 + (2n - 1)/(a +/3)) (1 + 2n/(a + 3))2 (1 + (2n + 1)/(a + /3))

and
02 _ a' 2 oBn :=p ( (2n + a + 03) (2n + a + 03 + 2)+

"3 "+ a 1 + 2n/(a +,3) 1 + (2n + 2)/(a+/3) + a). (2.3)
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From (2.2) we see that the choice

P:= ((2.4)

makes C, continuous on (a,13) in the extended parameter plane. Next we see from (2.3)
that the choice a-/3

a := • (2.5)

makes B, continuous in (a,13) (extended) as well. Indeed, we can now rewrite

B ,0-1 - a- 4n + 2 + 4n (n + 1)/(a +,3)
(a-1 + 03-1) (1 + 2n/(a + 3)) (1 + (2n + 2)/(a +13))'

which is continuous in (a-13-') for a-',3'- > 0.
As a result we can consider the (a`13-)-parameter plane. For a-',,3-1 > 0 we

have the rescaled Jacobi polynomials (2.1) with p and a given by (2.4) and (2.5). These
polv~nomials extend continously to the closure {(af 13) I a-',,3-' > 0}. On the bound-
ary lines {(a'-,0) 1 a-I > 0} and {(0,,3-1) ,31-' > 0} these polynomials become rescaled
Laguerre polynomials. On the boundary vertex (0, 0) the polynomials become Hermite
polynomials.

3. Uniform limits in the Askey tableau

The Askey tableau is given by the following chart (cf. Askey & Wilson [1, Appendix].

Wilson Racah

cont. dual Hahn cont. Hahn Hahn dual Hahn

Meixner-Pollaczek Jacobi Meixner Krawtchouk

Laguerre Charlier

Hermite

The various families of orthogonal polynomials mentioned here are all of classical type,
i.e., the orthogonal polynomials {Pn }n=o,1 ,... satisfy an equation of the form

Lpn = An ,

where L is some second operator (differential or difference) which does not depend on n.
The arrows in the chart mean limit transitions between the various families. The number
of additional parameters on which the polynomials depend, decreases as we go further
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down in the chart. In the top row there are 4 parameters. In each subsequent row there
is one parameter less. The Hermite polynomials in the bottom row no longer depend
an parameters. The families in the left part of the chart consist of polynomials being
orthogonal with respect to an absolutely continuous measure, while the ones in the right
part are orthogonal with respect to a discrete measure. In the case of Racah, Hahn, dual
Hahn and Krawtchouk polynomials the support of the measure has finite cardinality, say
N + 1, and we consider only polynomials up to degree N.

All the polynomials in this chart have explicit expressions as hypergeometric functions.
For instance, Jacobi polynomials are given by

P.',3) (x) = const. 2 F1  n1 X

Hahn polynomials are given by

Q.(x; a,,3, N) := 3F2 [n,'n + a + 03 + xl'- , N
a +1,-N ; 11 , n=0,1,...,N,

while they satisfy orthogonality relations

S~ ~~(a + 1). (0 + 1)Nv-. ,n m

jQni()Q'(x) xl(N- x)! 0, n m.
Z-=O

Racah polynomials are given by

R,(x (x+-y-+6+1);a, 3,y,6) 4 F= [-nn+a + 3+ a l+'1,-xx-+ 6 + +I a + 1,3+ 6 +1,__1 ;,

where Y + 1 = -N and n = 0,1,...,N.
Now consider monic Racah polynomials

rn(x; a,/3,-N - 1,6) := const. Rm(x;a,/3,-N - 1,6) = xn +.

and rescaled monic Racah polynomials

pn (X) := pn rn(p-1 X - ao,;/a, ,-N - 1, 6). (3.1)

Then the pn(x) satisfy recurrence relations (1.1) with

C= p2 n (n + a) (n +13) (n + a + /3) (n + /3 +6)

(6-a-n) (n + N + a + /3 + 1)(N + - n) (3.2)
(2n+a+3_-1)(2n+a+/3)2 (2n+a+/3+l), (3+

Bn P((n + a +,, +1) (n + a + 1) (n + +6+ 1) (N-n)
(2n + at + 03 + 1) (2n + cr + /3 + 2)

(n+/3n(n-+-)( n )(n+N+a+3+) )

(2n + a ++3) (2n + a + /3 + 1) +o). (3.3)
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Now we would like to express p and a in such a way in terms of a, /3, S and N that
the polynomials p,.(x) in (3.1) continuously depend on these parameters up to boundaries
at infinity in the four-parameter plane, and such that Hahn polynomials and all families
which can be reached from the Hahn polynomials in the Askey tableau, are obtained as
polynomials p,.(x) with parameters on the boundary. This is a task analogous to what we
did in section 2, but much more complicated. Again, formula (3.2) for C,. should suggest
a choice for p and next formula (3.3) for B,, should lead to the choice of a. Thus we arrive
at

p:= T__ 1(3.4)

o N(a+1)(3+6+1) (3.5)
a+ +

Now turn from parameters a, 0, 5, N to parameters a, b, d, v by the substitution

13=ba, 6=(bdv+l)a, N=bv. (3.6)

Then we can prove the following theorem. Computations for this are somewhat tedious.
Some of them I performed with the help of Maple V.

Theorem The rescaled monic Racah polynomials p,.(x) given by (3.1), with (3.4), (3.5)
and (3.6) being substituted, are continuous in (a- 1 , b-', d- 1 , v-') for a- 1 , b-', d-1, v- 1 >

0. When we restrict to any of the lower dimensional boundaries than we obtain rescaled
versions of other polynomials in the Askey tableau, as given below.

dimension specialization orthogonal polynomial family

4 Racah

3 d = o Hahn
3 v = 0 Jacobi
3 b = oc Meixner
3 a = c0 Krawtchouk

2 d,v =o Jacobi
2 d, b = co Meixner
2 d, a = cc Krawtchouk
2 v, b = cc Laguerre
2 v, a = 0c Hermite

2 b, a = oo Charlier

1 d, v, b = oo Laguerre
1 d,b,a = oc Charlier
1 d,v,a = c0 Hermite
1 I, b, a = oo Hermite

0 V,b,d,ca = cc Hermite

101



It is probably possible to formulate an anlogous theorem with Hahn polynomials being
replaced by dual Hahn polynomials. We should start then with a different part of four-
parameter space for the Racah polynomials. For Wilson polynomials we can start with
three different regions in four-parameter space. For each of these three cases there are
different limits in the Askey tableau (cf. [2, Table 4]). We can hope that for each of
these three cases a result analogous to the above theorem will hold. A further possible
extension might involve q as a fifth parameter. One might also try to include the limits to
non-polynomial special functions like Bessel functions and Jacobi functions (cf. [2]).
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Living in a Faraday cage

J. Korevaar

1 Introduction: two questions

It is nice to be able to tell you something about a problem area that a few of us here have
been investigating. Some of the following has been joint work with J.L.H. Meyers. There is
also ongoing work by and with A.B.J. Kuijlaars and M.A. Monterie.

We have studied two principal questions that have a lot to do with each other, especially
in the case of the unit sphere S = S(O, 1) in R 3, so let us focus on it. For large N, we consider
N-tuples ZN = (Ci1... ,-,N) cf points on S.

Question 1.1 In what I call "the Faraday caage problem for discrete charges" on S, we place
point charges 1/N at the N points of ZN. We ask: How small can one make the resulting
electrostatic field C(x, ZN) on balls B(O, r), (r < 1) by judicious choice of ZN? To get closer

to physical reality, we would like to demand that our N-tuple of point charges have minimal
potential energy

1 N 1
V(ZN) = N2 E I - C(.

However, for technical reasons we won't impose that restriction here.

For a continuous equilibrium distribution of total charge 1 on S, the field inside S would
be zero and the potential would be constant (equal to 1) throughout the closed unit ball. In
our case the field C(z) = E(x, ZN) would be minus the gradient of the potential

U~x) UIz, N)=k c (1.2)U(X) = u(X, ZN) = xN E (- X*" 1
J.=J

Question 1.2 In what is called the "Chebyshev-type quadrature problem" for S, we ap-
proximate the average of functions f over S,

J f (()ds(C) =f f(()da((), (a = s/47r)

by the arithmetic mean

N{f((I) + + f((N)}.
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We now ask: How should one choose the N-tuple ZN in order to get small quadrature
remainder

R(f, ZN) = j (()do,(() - f 1(4) (1.3)

for a large class of functions f? We would call an N-tuple of nodes ZN "good" if the
corresponding quadrature remainder vanishes or is very small for all polynomials f(X1 , X2, Z3)
up to relatively high degree p.

In the past the speaker and coauthors T. Geveci and R.A. Kortram have studied the
analog of Question I for very smooth plane Jordan curves, cf. [5,2,6] and Section 3 below.
More recently we have studied Chebyshev-type quadrature for a variety of simple surfaces
[7,9].

2 Equivalence of the questions for the sphere

For the sphere S there is a close connection between the two questions: good N-tuples of
nodes correspond to configurations of point charges for which the electrostatic field is very
small inside S. For example, we have the following simple

Theorem 2.1 cf. [8] For a given N-tuple ZN on S, one has

R(f,ZN) = 0

for all polynomials f of degree < p if and only if

C(z, ZN) = O(IXIP) for0 < x < ro <1.

There is a corresponding more general "Equivalence Theorem" involving very small re-
mainders R(f, ZN) for all polynomials of degree < p with sups If I = 1 [8]. Hence if for some
p there is a polynomial f of degree p for which R(f, ZN) is not very small relative to sups If ,
the field 6(z, ZN) can not be too small either. On the sphere, every polynomial f of degree
< p can be written as a linear combination of spherical harmonics of order < p. Counting
linearly independent spherical harmonics, one finds that for given ZN, there is always a non-
negative polynomial f of degree < 2v'N- with sups Ill = 1 which vanishes on ZN. Estimating
R(f, ZN) = fS f and applying the Equivalence Theorem, one obtains

Theorem 2.2 cf. [8] For every N-tuple ZN of points on S,

sup I.(z,ZN)I > 0 < r <lxl=, 4(v'N- + 1)3'

For large N, the lower bound is extremely small, but we believe that it can "almost" be
achieved for special N-tuples. However, we are far from a proof for the corresponding

Conjecture 2.3 For ro E (0,1), there are constants A and c > 0 such that for special
N-tuples ZN with N -- cc,

sup 1.6(z, ZN)I _• Ar"'dI, 0 < r < to.
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3 The case of plane curves

A first argument in support of Conjecture 2.3 is provided by the known state of affairs in the
case of the unit circle C = C(O, 1) in the plane R 2 -_ C. Now using the logarithmic potential
(as one should in the plane), the electrostatic field due to point charges 1/N at the points (i
of an N-tuple ZN in C has the complex representation

C(xZN)={-- E -Z '

where the bar stands for complex conjugation.

Theorem 3.1 For every N-tuple ZN of points on C(O, 1),

rN-i
sup E(z, ZN)I > -2N + O<r< 1,

while for the special N-tuple ZN consisting of the vertices of a regular N-gon inscribed in
C(O, 1),

N-1
sup I-(z,ZN)I = 0 < r < 1. (3.1)
Izl<r 1 - r

Point charges 1/N at the vertices of a regular N-gon happen to minimize the potential
energy for N-tuples on C(O, 1). Switching to an arbitrary Jordan curve r, the condition of
minimal potential energy leads to an N-tuple ZN = (Ci,.. . v) of so-called Nth order Fekete
points on r. If we limit ourselves to fields of point charges at Fekete N-tuples ZN, circles are
quite exceptional among plane curves:

Theorem 3.2 [5,2,6] Let r be a Jordan curve of class C 3+e different from a circle and let
K be an arbitrary closed domain in its interior. Then for point charges 1/N at Nth order
Fekete points C1 .... CN on F,

c

sup Ie (z,ZN)I - as N -+ co (3.2)
K N

for some constant c = c(r, K) > 0.

Compare this result with (3.1) for the case of a circle! We expect that (3.2) has an analog
for smooth surfaces with N replaced by v/N, cf. [3]. Could it be that (3.1) has an analog for
the sphere with N replaced by V7N? Cf. Conjecture 2.3.

4 Back to the sphere

The difficulty in the case of S is that we don't know where to put our N point charges in
order to get a small field. We wish to distribute them very regularly over S, but there are no
regular polytopes with more than 20 vertices! Minimazation of the potential energy V(ZN)
(1.1) does lead to well-distributed, well-separated N-tuples, but the corresponding fields or
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potentials are not readily amenable to analytic treatment. However, if we minimize certain
related functions, it will become possible to apply multidimensional complex analysis. In the
following we will treat one such function; another one is described in Section 6.

In order to obtain a small field e(x,ZN) on balls B(0,r) it is sufficient to make the
potential U(z, ZN) nearly constant on such balls, or to make the adjusted potential

U*(z) = U*(Z, ZN) = U(z) - U(0) = U(z) - 1 (4.1)

very small. Being harmonic on the unit ball, U*(z) has average zero on every sphere S(O, r)
with r < 1. Thus if we fix r and minimize the function

Fr(CI,. -- , (N) = is U*(r77)2 day(i), Cj E S (4.2)

we may expect that U*(ril) will vanish at many well-distributed, well-separated points itk E S
In order to formulate a precise hypothesis we need a definition.

Definition 4.1 We say that the (adjusted) potential U*(z) = U*(z, ZN) (4.1) is of zero type
(r,6,M), where r E (0, 1), 6 > 0 and M > 10, if the function U*(ril), q E S vanishes at M
points ilk E S, 1 < k < M with the following properties:

(i) every spherical cap E C S of area > (1/5) area S contains > M/1O points ilk;

(ii) the points lk admit separation constant 26/v/-:

l1% - ikl >_ 28IVM--, j,k= I,... ,M, jq• #.

Here the numbers 5 and 10 have been chosen for convenience; they could be replaced by
other constants.

Looking at the cae of the circle, the following hypothesis would seem reasonable.

Hypothesis 4.2 For r E (0,1) there is a constant -y = -y(r) > 0 such that for N > No(r)
and N-tuples ZN = (c1,..., N) on S which minimize F, (4.2), the (adjusted) potentials
U*(x, ZN) are of zero type (r,1,M) with M > yN.

5 Use of complex analysis

We have the following

Theorem 5.1 For fired r E (0, 1) and J > 0, there are positive constants B and c such that
for every (adjusted) potential U*(x, ZN) of zero type (r,6, M) with M > 10,

sup IU*(z,ZN)I Be-'-. (5.1)

The constants B and c depend on r and 6 but not otherwise on ZN, nor ot 1.
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Proof (outline). We will sketch the proof here, referring to [4] for details. Accordingly, let
U*(z) = U*(z, ZN) be a potential of zero type (r,6, M) with M > 10. For U*(rii), 17 E S we

let 7j,. . ., i7 M be zero points as in Definition 4.1. Setting R = max(r, 4/5) < 1 we introduce
the closed disc D in the (X1 ,z 2 )-plane given by x2 + zX _ R2 and we let E C S be the

spherical cap which lies above D. Since R > 4/5, the area (1 - VYTR)2.r of E will be

_ (1/5) area S. Hence by our hypothesis, the cap E and each of its rotations about the origin

contain > M/1O points 77k.

Observe that for 1= (X1 ,X 2 , /1 - z-x2) E E with (Zx1 ,X2 ,0) E D,

U*rl)=N 11+r2 -- 2r(ijlxl + (j2X2 + Cj3 /1 - - X2)
U*(ri) = -- 1rjj=l

= W(X1,X 2 ), (5.2)

say. For z = (Z1 , Z2 ) ranging over a suitable C 2 neighborhood rl of D (depending on r), we

now introduce the complexified potential

N 2 22

W(z) = N 1+r -2r(Cjlzl+(j2Z2+j3 1-z } - Z2 1. (5.3)
j=l

We choose 11 in such a way that we can define holomorphic branches of the roots in (5.3)

(taking them positive on D). We also require that IW(z)I has an upper bound A on

independent of N. Abusing the notation, we will henceforth write (X1 ,X 2 , 0) = (X 1 ,z 2 ) = z
for points of D

By the preceding, U*(r7) vanishes at s > M/10 points 77 on the cap E; it is convenient

to rename these points i1,... ,1,. Then by (5.2),

W(z) = 0 for =x k=(7kl,vk 2 ) ED, k=l,...,s.

It will follow from the hypothesis (cf. Definition 4.1) that our points •1,... , admit a sepa-

ration constant of the form 26 / V/s where 61 > 0 depends only on 6 and r (via R):

Itj -- Gk I -> 2611VYs, j,k = 1,..., s, jo•k

Known results of complex analysis may now be used to show that there is a constant b > 0

depending only on D, Q and 61 (hence, only on r and 6) such that

IW(x)l < Ae-'rM, Vx E D, (5.4)

see the Elucidation below.

We finally return to U*(ri7). In view of (5.2) and since s > M/10, (5.4) gives

1U*(rtq)i < Ae-c-M_, c = b/V/-h, V17 E E. (5.5)

The same inequality will hold on every spherical cap obtained from E by rotation about the

origin in R 3 , hence (5.5) holds for all 'q E S. That is, we have (5.1).
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Elucidation Inequality (5.4) may be derived from a Jensen-type theorem for C" ([10] p.385)
and an estimate for the area A(p) of the zero set Z(W) of W in D,., the p-neighborhood of
D in C 2 . By the Lelong-Rutishauser theorem ([10], p.386), Z(W) has area > 7r68/s in each
of the balls B(fk,6/vrs). Since those s balls are disjoint, we find that A(61/V1s) _ ir62. Now
by a theorem of Berndtsson [I], A(p)/p is nondecreasing, hence for p > 61/1V, and as long as
DP C 0,

A(p) > A( > Irbpvf._611v/i -_6p

This inequality is precisely what is needed for (5.4), cf. [4].

6 Conclusions

Combining Theorem 5.1 and Hypothesis 4.2 we obtain

Theorem 6.1 Suppose that the plausible Hypothesis 4.2 is satisfied. Then for given r E
(0,1), there are positive constants B and d such that for N > No(r) and the special N-tuples
ZN on S which minimize F, (4.2),

sup JU(x,ZN) - 11 •_ Be-d'. (6.1)

IzI=r

Instead of minimizing Fr, one may minimize the simpler function
I N 1 ,

S= 1 1( E S (6.2)

which resembles the potential energy V(ZN) (1.1). Again denoting the minimizing N-tuples
by ZN = (Ci,..., (N), the corresponding potentials U(rq, ZN) will be stationary at the points
77 = Ck. Under the plausible hypothesis that the points (k on S admit separation constant
11VN__ one can again prove an inequality (6.1), see [4].

Given the upper bound in (6.1), the Poisson integral for U - 1 on the ball B(O,r) may
be used to obtain a similar upper bound for sup IE(z, ZN) I on slightly smaller balls. More
support for Conjecture 2.3!

The Equivalence Theorem indicated in Section 2 finally shows that special N-tuplhs Z7, for
which one has an inequality (6.1) form good N-tuples of nodes for Chebyshev-type quadrature
on S.
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On Chebyshev Polynomials over disjoint Sets

A.L. Lukashov

30 March 1993

1 Introduction

Let K be a compact subset of the real line, C be its complement R \ K. Con-
sidering a Chebyshev ( T- ) system 4t = {fo, 1..-.. , ON} of continuous functions
over K one calls a polynomial c0 0(x) + ... + CN -I1 ON-I(I) + N N(X) such that its
uniform norm over K is the minimal one among all polynomials of such a form
the Chebyshev polynomial TN (K, 4, x).

Those polynomials were found for the first time by P.L. Chebyshev for the
cases K = [-1; 1],

WN(X)'WN(X) WN(X)

where WN(X) E HN, the set of polynomials of degree no more than N, is fixed and
non-vanishing on K. A.A. Markov gave well-known representations of TN(K, t, x)
for the same cases, and also for K = [-1; 1],

1 x XN

where W2N(X) is a fixed polynomial which is positive on K, through trigonometric
functions. Those representations now are known under the name "Chebyshev-
Markov rational functions" (see [15] for exposition of their theory and references
there). The theory of the Chebyshev polynomials for K = [-1; 1] can be treated
as a part of general theory of T-systems (see [81 for that theory and [7] for some
aspects of the Chebyshev polynomials theory in that case ).

The case of disjoint sets was firstly investigated by N.I. Ahyeser [1,2]. Par-
ticularly he gave a parametric representation of the Chebyshev polynomials for
K= [-1; a] U [b; 1],4ý = -- p.
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The main ideas of the solution for K = [a,; b1] U ... U [a,; bp], 4t = 4,p are
analogous to ones of P.L. Chebyshev, E.I. Zolotarev, and N.I. Ahyeser. The
integral representation is easy to obtain (it was suspected as a solution in [10],[13]
and was written down explicitly in [14] ). The parametric representation through
automorphic functions which is rather similar to one of the previous case was
obtained by the author (see [11] for an announcement). It needs to be mentioned
that the author gave this representation for the first time in 1991 at the conference
on function theory in Odessa being unaware of [14],[17]; last item also includes a
nice survey of the problem with references.

In the case 4t = I one needs to take into account the possibility of degen-
eracy. The non-degenerate case for K = [-1; a] U [b; 1] was investigated in [12]
(without indicating the nondegeneracy).

The main goal of this note is to consider the case 4P = I' R, K = [a,; b1] U... U
[ap; bp], a, _• bi < a2 < b2 < ... < ap < bp, if a, = b,, 1 < i < p then the relation
p _! N + 1 is required. A way of obtaining the exact solution in finitely many
steps is described.

2 Regularity

It is more convenient from the beginning to treat the problem as one of uniform
approximation with weight s E C(K), s(x) 6 0 for x E K, of the function
f(x) =- XN by usual polynomials of degree no more than N - 1.

Proposition 1 (The Chebyshev alternation theorem) Let f E C(K), E, =

maXZEK I I e p))(z) i, and e(x) = f The p(x) is the best approximation of f
in C(K) by the set Hn iff there are at least n + 2 points .+2C K, xi <X,
where

r =e(x,) = E,i = 1,2,...,n+2 (1)

e(zi+1 ) = e(Xj)(-1)1+EjEJJ = {j xi < bj < aj+l _< xj+i} (2)

(Here (-1)" = sign{s(bjs(aj+i)}). The proof of this theorem is quite analogous
to usual one (see, for instance, [6] ) and is omitted here.

A set of points {xi} satisfying (1)-(2) is called an alternation set, points satis-
fying (1) are called deviation points. For f(z) = n, s(z) = sn(x) E H,, s(x) $ 0
with z E K, p(x) being the best approximation considered above, c(x) will be
denoted as R (A, K, x), and E, will be denoted as M,,(A, K). Here A is a matrix
of inverse values of poles:

n
} i=l,n=oo (X

ja=,f i=t = : , s.(z) = I'[(1 -oa,.z).
i=1
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Assume for the sake of some simplifying a,,,, = 0.
There are two possibilities in the Chebyshev - Markov problem: its solution is

either degenerate or non-degenerate (in usual sense of the degeneracy for rational
functions). Consider at first the non-degeneracy case.

Since between any two alternation points &,(A, K, x) vanishes at least one
time then all zeroes of denominator of &,(A, K, x) have to be real,simple, and
to lie on [a,; bp]. By the same reason there must be at least one deviation point
between any two of zeroes of P&(A, K, x).

In non-degenerate case there are two possibilities for any pair of the zeroes
which are distinguished by points of C:

1. There is no point x between them, where the inequality IR,,(A, K, x)I >
M,(A, K) holds.

2. There exist such points. Then there are exactly two deviation points be-
tween the zeroes, and one (arbitrary) point of them belongs to a set of
alternation points.

Thus there exists in non-degenerate case a system of intervals K' D K such
that &, (A,K',x) = R,,(A,K,x) and IR,,(A,K',x)I > IR,(A,K, y)I for x E
R \ K' = C', y E K'. It will be said that n-th row of the matrix A is regular
relatively to K'. The matrix A will be called regular relatively to K if for every
n > p the n-th row of A is regular relatively to K.

Theorem 1 The following assertions are equivalent:

1) The matrix A is regular relatively to K.

2) For every n E f, n > p there exists a partition {n,,..., np} of n such that
ei,o ... eip- 2  ep- 1  ei,o ... e- h + .

f1,o ... flp-2 fip- I fi,o ... fl,p-2 91= (3)

fP- ... fp-1,p-2 fp-l,p-1 fp-1,0 ... fp-1,p-2 gp-1
,i= 1,2,...,p

where

ei,= =l,2,...,p; k=O,1,...,p-1; (4)

' , xx . 13k=0,1,...,p-1; (5)
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j= J1+ (1 -dx, i = 1,2,..., p- I; (6)

ft=2~ aj,nXl1 'a ')n. 0f F/%,(1/ay,.)ay,

I= i--a""'n dx, i= 1,2,...,p; (7)
j=2 X) (1ayx)/WP(X)l

W,(x) = fl(x - ci,)(x -,3j). (8)
j=1

3) There exists a polynomial solution (P, Q) with real zeroes of the equation

p2 (X) _ (X)Q2(X) = S1(X).

Sketch of the proof. 1) €* 2).
Since IR,(A,K,x)I > Mn (A,K) on C and I!R,(A,K,x)I < Mn(A,K) on K

one can easily see that

RnP(A,K,x) + VfRn(A,K,x) - Mn(A,K)I = IF.(x)l

Mn(A, K)

is equal to 1 on K. Here and in (6),(7) one needs to choose the branch of
square root on C \ K such that Fn(x) has no zeroes in C \ K, and only poles in
1/a,,,... , 1/an,n of order 1. Further the differential equation

R',(A,K,x) = rn+p-I(X) (9)

VRn(A, K, x) - M.(A, K) =7-p(X)sn(X)'

where r,+p1 l(x) E Hn+p-,, is almost evident. Then after evaluating the residu in
1/ ay,,= 2,..., n, one easily obtains the relation

R'(A,K,x) = c p(C )p(IZaj,)a(, 1

V/R2(A, K, x) - Mn2 (A, K) W / j=2 (1 - a,, ),x)

with a monic polynomial c-. 1 E H.-I and a nonzero constant c. Integrating (10)
over [a,; bi] and [bi; a+1+], i = 1,... ,p - 1; j = 1,... ,p and excluding unknown
coefficients of c.- 1 from the obtained system one concludes validity of (3), where
n1 equal to .AargFn(x) over [a,;bj],j = p.

2) 4* 3). Obvious from (10).
Remarks.
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1. For a, = .. =a, = 0 system (3) is equivalent to one from [14]. In this
case theorem 1 was obtained by the author independently.

2. The differential equation (10) and the corresponding integral representation
for a,, = =. = a,,,, = 0 were suggested as a solution of the problem of
finding of the Chebyshev polynomials over several intervals in [10],[13].

3. It is not possible to take a limit in (3) with aj,,, --+ 0 separately in (6) and
(7), though the result for a,,,, = a,,, = 0 turns out to be the same as
(3) with g, = ... = gp-i = hi = -"=hp = 0.

4. The case a,,,, = - - a,,,,, = 0 was discussed recently in [171. The author
became aware of this work only during preparation of the manuscript.

3 Parametric representation of the Chebyshev
- Markov rational functions in regular case

Firstly recall some notions from the theory of Burnside-Schottky automorphic
functions (see,for instance,[3]). Let T be a complement of an even number
of disjoint disks D1,D 2,.. D. ,, D,,D',...,D•_1 in CU {oo}. The corre-

sponding Schottky group is a free group generated by fractional-linear mappings
Ti,... ,T.1 such that Ti(Di) = (C \ D) U OD! U {oo}.

H. Weber proved [18] that for any system of p intervals K of real axis there
exists a conformal map of C onto some domain T' = T 0 {z : !z > 0} where T
is of the above-mentioned form with Di and D! being symmetric relatively to the
real axis, i = 1, 2,... ,p - 1,and all their centres belonging to the imaginary axis.
The mapping function can be written as follows:

)31 - aiw2(z),w(z) = (z - T,(0))(ý - rj(oo))
=lw2(z) , (z - T,(00))(ý - T((o)) "

Here r = {To(z) M z,T 1 (z),...} is the above-mentioned Schottky group, and • is
the image of the infinity point.

W. Burnside proved [5] that any function automorphic relatively to the group
r can be expressed as a product of prime-functions in the form

with

)= (z - Y)f (T,(z) - y)(T,(y) - Z)
, (Ti(z) - z)(T,(y) - Y)'
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where now, of each pair of inverse substitutions T and T-1, only one is to be
taken in the infinite product, and x's and y's are the zeroes and infinities of the
function in T or their homologues.

Recall also other Schottky-Burnside automorphic functions:

exp'k(z) = [' z- (z- Jk), Jj = (TjTk)-'(oo), [41
j=l

[ = z- T,(j
[z; ý] = .i0 z -T ' [9], [16]

Theorem 2 If A is regular relatively to K then the Chebyshev-Markov rational
functions RP(A, K, x) have the following form:

n p-1

R,,(A,K,x) = M•(A,K)g(II [z; ý4,] exp{- E nk4bk(z)})
j=1 k=l

where g(z) = (z + 1/z)/2 is the Joukowski map,z and x are connected by (11),
parameters ý 's are found from the system

1 -
01 - aIw2 (ýj,n) ---- aim,, 1, 2,.. ,n; n > p,

S= • and the number, ni are from Theorem 1.

Sketch of the proof.
After the substitution (11) the function F, from the proof of theorem 1 will be

a single-valued analytic function of variable z in domain T' with boundary values
belonging to the unit circle. From the Riemann-Schwarz symmetry principle it
follows that this function can be extended through the circles and the real axis by
the inversion. Repeating the same consideration one can extend the function up
to an automorphic function relative to the corresponding Schottky group. That
automorphic function has poles only in ý's and their homologues, and zeroes in
ý's and their homologues. Thus it can be written in the form

"i=2
where k, I are some natural numbers.

From the properties of the Burnside functions this expression can be trans-
formed into

n p-1

fl[z; C,,•] exp{ m'-t m k (z)}
i=l k=1

with mk being some integral numbers. Simple computation of the variation of
argument of that expression over 8D, and over the real axis completes the proof.
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4 General case

Let n-th row of the matrix A has the following form:

al~n , ... I am on . O mo + ln .v .. ,v Gm 1.n, m am + in, ••• ... ,a mp- _ln

where ion, m1 ,... , mp- 1 are numbers of poles 1/ao,, lying outside of [a,; bp], in
[bi; a2], • .. , [bp-i; a.) correspondingly. Assume also a1 = -1, b, = 1.

From precedent considerations by straightforward reasonings one can find the
following description of solution of the Chebyshev-Markov problem in the general
case.

Step 1 For m0 = n consider the usual Chebyshev-Markov function

11) C - a1,,,
M,(A, [-1; 1])cos arccos 1- ax

i=1 1 - ,X

If all its deviation points belong to K then we are done.

Step 2 At most one of mi, 1 < i < p - 1 does not equal to zero.

Substep I If m 0 = n then for any l, 1 < l < n- 1, and for each bk, k=1,...,p-
there exists at most one rational function M,,(x; bk, 131,n, A) (see [12]
for explicit formulae through the Jacobi elliptic and theta- functions)
such that n-th row of A is regular relatively to [-1; bk] U [031,n; 1] with
corresponding partition {l, n - l} of n.

Similarly, for any 1, 1 < I < n - 1, and for each ak, k = 2,... ,p there
exists at most one rational function Mn (x; asn, ak, A) such that n-th
row of A is regular relatively to [-1; al,n] U [ak; 1] with corresponding
partition {n - 1, l} of n.

If a set of alternation points of some of these functions is a part of K
then we are done.

Substep 2 Only one mi, j > 1 is not equal zero.

For any 1, 1 < I < n - 1 there exists at most one rational function
Mn(x; bk, 0i,n, A) and at most one rational function Mn(x; al,,, ak, A)
such that n-th row of A is regular relatively to [-1; bk] U [/,3,n; 1] or
[-1; aL,n] U [ak; 1] with partitions {l, n - l} or {n - 1, 1} of n corre-
spondingly. If a set of alternation points of some of these functions is
a part of K then we are done.
Otherwise one needs to consider matrices A' such that (n - 1)-th row
of A' coincides with n-th row of A without some - E [bj; aj+1 ]. If
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the deviation points of M._l(x;bjf31,0._l,A') with /31, = aj+,, or of
M,-.(X;a1,n-1, ai+j, A,') with ac,,- 1 = bi lie on K, then the function

will be the degenerate solution of the Chebyshev-Markov problem.

Step k (with usage of automorphic functions)

Substep 1 m0 = n

For any partition {fl,... ,nk-1} of n, and for any subset B of k - 1
essential elements from E = {bl,a 2,.. . ,a,,} (i.e. for every j, 1 < j •
p - 1 the set B n [b%; aj+l] contains at most one element) there exists
at most one Chebyshev-Markov rational function R,,(A, K', x) with
K' = [-1; bJ]U.. .U[a'l,; 11, and and with the partition {nl,... .n-}.

Here k - 1 of the ends of these intervals consist the set B, more-
over {bf,... ,bV,.- 2 } can intersect E only in the points bl, .. . ,bp-. 1, and

{f .... , k-l} can intersect E only in the points a2, ap-1. Quanti-
ties b,,... , akI are obtained from the system (3) viewed as a system
of k - 1 Lonlinear equations with k - 1 values known from B, and
other k - 1 unknown variables from {I31, a 2,. .. , 1 }. The function
R,(A, K', x) is given then by theorem 2.

If a set of alternation points of some of these functions is a part of K
then we are done.

Substep I There are exactly I - 1 non-zero elements rin,.. . , a_ among the
ml,... ,imp-I. - For any partition {n ,... ,nk-.} of n, and for any sub-
set B of k - 1 essential elements from E such that only one point in
every pair {at,,bt,- 1 },i- = mrn,,i = 1,... ,l - 1 belongs to B, repeti-
tion of the precedent considerations gives R(,,(A, K', x) with analogous
requirements on K'. If a set of alternation points of some of these
functions is a part of K then we are done.

Otherwise one needs to consider matrices AM1I such that (n - 1)-th row
of AM1I coincides with n-th row of A without some -L E [bz,_ 1; at,],i =

1,... ,I - 1. If after reiteration of this substep (or of the preceding
one for the choice of a pole in [bi,_,; a1,] with inj, = 1) the function
&-,(A('), K', x) with b1,_,, a,, belonging to E' = {b¥, ',... , a'-. 1} has
a set of alternation points which is a part of K then Rn_1(( 1 ), K', x)
will be the degenerate solution. Next iterations of the last consid-
eration can be proceeded with matrices A(j) such that (n- j)-th
row of AU) coincides with (n - j + 1)-th row of A(-1) without some

ail E [bi,_.;a1 ,]i = 1,... ,l - 1, where i equals to none of 1k,,. • . ,l#_

which were taken for the precedent matrices A(') , AU 1). The sub-
step is completed with j < I - 1.
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The step is completed with 1, 1 < min(p - 2, k) substeps.

Full description is completed in k, k < n steps.
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Answer to a query concerning the mapping
W = Z1/m

T.L. McCoy* and A.B.J. Kuijlaarst

Dedicated to Jaap Korevaar on his 70th birthday

For 0 < r < 1 and m > 0, let C,,,, denote the disk 1w - c,,mI < p,,, with
center (1 + ,.)l/m + (1 - r-)l/m

cr,nM 22

and radius (1 + r)1/m - (1 - r)l1/m

2
The purpose of this note is to consider a question of L. Petkovi6 who asks
(paraphrasing slightly) (a) how does one establish that the image Dr,m of

Iz - 11 < r under w = zl/m has diameter 2 p,,m and (b) how does one es-
tablish that Dr,m lies inside C,,m? Part (a) follows quite easily from part
(b): if D,,m C C•,, then D,,m does not have diameter greater than 2p,.,,; on
the other hand, the mapping w = zl/m sends the points z = 1 ± r to the
points w = (1 ± r)'/m = c,,m ±- P,,m so that D,,m can not have diameter less
than 2 p,,m. Thus we need only concern ourselves with part (b) of Petkovi6's
question. L. Petkovi6's question originally appeared a few years ago in the
(now-discontinued) Queries column of the A.M.S. Notices ([3, Query 359]) but
was never answered. Petkovi6 asks the question for m E N, but the question
makes sense for all real m > 1. We shall prove

Theorem For 0 < r < 1 and every real m > 1, D,,m C C,,m. For m > 1, the
boundary OD,,m meets 3 .m ,, only at the two points (1 - r)1/m.

Proof For m = 1, there z nothing to prove since Drm = Cr,m. So we assume
m > 1. The boundary of D,,m is a simple closed curve with parametrization

w(O) = (1 + re'*)l/m, 0 < 0 < 21r.

*Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
tFaculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht

24, 1018 TV Amsterdam, Netherlands, e-mail: arnoOfwi.uva.nl
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This curve is tangent to the circle 6C,,m in the points c p,. - pr,m. To prove
that the curve w(0) lies inside OCr,m• (except for the points ce,,. ± p,,,), we
compute its curvature.

In general, the curvature r of a curve w(O) in the complex plane is given
by

Imt wt

ItbI3
where dots denote differentiation with respect to 0, see [2]. For w(O) - z(O)11/
with z(O) = 1 + re , we compute

tb(0) = ri'zO(/),

and by logarithmic differentiation

(= ([( rie' ]
S+ i +

Hence

Im tb(O)t-'(O) = ftb(O)12 Re [( ) re + 1

1) r(cosO + r)+
= Itii(0)12 [(M Iz(0)12 1]

and finally

K (0- -1) r(cosO + r) + Iz(0)I2 = _+_r2 +_(_+_ )rcos

JK(O) (M__________ m+r+(m +1)r cos60

I-k(O)IIz(0)P rlz(O)1+1/m

Since m + r 2 + (m + 1)rcos0 > m + r 2 
- (m + 1)r = (m - r)(1 - r) > 0,

the curvature is strictly positive, and so the domain D,,,, is strictly convex. A
further computation gives

-(M 2 
- 1)(r + cosO) sine

-= mlz(0)13+l/,

We see that k(O) has precisely four simple zeros in [0, 27r), namely at 0 = 0, 7r
and ± arccos(-r). By a result given by Blaschke [1, p. 161], see also [2, p.3 0],
this implies that the curve w(O) has at most four points of intersection with
any circle. The circle OC.,, is tangent to w(6) in the points c,,m n± Pr,, and
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so there are no more points of intersection. Hence w(O) lies either completely
inside or completely outside OC,,m. (Note that we have interpreted tangential
intersections to count as multiple intersections in the Blaschke result. This
"double counting" interpretation is indeed valid, for otherwise we could always
produce a circle close to OC,,,, which meets w(O) in at least five points.)

We shall be finished if we can show that in the point c,,m +pt,m the curvature
of w(O) is greater than the curvature of OC,,m. So we want to show that
K(O) > l/p,,,,, or

r(1 + r)'/- (1 + r)1/m - (1 - r)1/m

m+r 2

Rewriting this, we need to show

(m +r)(1 -r)l/ < (m -r)(l +r)11', mn>1, 0< r <l (1

For r = 0, we have equality in (1). Further it is easy to check that, for
0 < r < 1, the derivative with respect to r of the left hand side is less than
the derivative of the right hand side. Hence the inequality (1) holds and the
proof is finished. C
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HOLOMORPHIC EMBEDDINGS OF C IN C"

Walter Rudin

The following two theorems were proved jointly with Jean-Pierre Rosay.

TH. I. If n > 3 ,ad { Ak }, {Pk} are discrete sequences if C and C" respectively

(without repetition) then there is a holomorphic F: C --+ Cn such that

(1) F(C) is a closed subset of C",

(2) F'(A) :A 0 for every A E C,

(3) F is one-to-one, and

(4) F(Ak)= Pk for k = 1,2,3,....

(Properties (1), (2), (3) may be sunmnarized by saying that F is a proper

holomorphic embedding of C in C".)

TH. II. If E is a discrete subset of C2 then there is a holomorphic F : C - C2

that satisfies (1), (2), and

(4') F(C) D E.

Remarks.

(i) It is not known whether Th. I holds also when n = 2, i.e., whether the

inunersion proved in Th. II can be improved to an embedding.

(ii) Th. I shows that there exist proper holomorphic embeddings of C in C"

(when it > 3) which cannot be extended to holomorphic automorphisms

of C".

(This follows from the existence of non-tame discrete sets in C". See Th. 4.5

in Trans. AMS vol. 310, 1988, p. 59.)

(iii) It is not known whether (ii) holds for n = 2.

125



HOLOMORPHIC HULLS WITH
RESPECT TO INVARIANT FUNCTIONS

A.G.SERGEEV

Let D be a domain in C" invariant under the action of a compact Lie group
K. What is the holomorphic hull of D with respect to holomorphic functions in
D invariant under K ? It's clear from the simple examples that this holomorphic
hull should differ much from the usual holomorphic hull of D. Take, e.g., the ring
D = {1 < Jzj < 21 in C1 with the action of the circle group S' given by rotations.
Then the only Sl-invariant holomorphic functions in D are constants so they extend
holomorphically across the boundary of D to all of C' (note that D is a domain of
holomorphy in this example).

In this article based on the papers [3],[4],[7],[10j by P.Heinzner, X.Zhou and the
author we present some general assertions about holomorphic hulls with respect
to K-invariant holomorphic functions and give their applications to particular K-
invariant domains such as matrix Reinhardt domains and the extended matrix disc.

1. Complexifications of invariant domains of holomorphy.
Let K be a compact connected real Lie group. The complexification of K

(cf. Hochschild [5]) is a complex Lie group Kc with a (continuous) homomorphism
i : K -+ KC such that for any (continuous) homomorphism ý : K -+ G to a complex
Lie group G there exists a unique holomorphic homomorphism g : KC -, G such
that the following diagram

K---- Kc

KC K

is commutative.
The complexification KC is uniquely defined up to biholomorphic homomor-

phisms and the Lie algebra tc of Kc is the complexification of the Lie algebra t of
K, i.e. tc = t + it. Moreover, KC is Stein and i(K) is a totally real submanifold of
KC with dinR i(K) = dimc Kc. If, for example, K = 5' then KC = C* - C \ 0, if
K = SU(n) then KC - SL(n, C).

Let the group K act linearly on C", i.e. the action of K on C" is given by a
representation p : K --+ GL(C"). Then it generates a holomorphic representation
pc : KC -+ GL(Cn), i.e. a holomorphic linear action of KC on Cn. Let D be a K-
invariant domain in Cn. We call its complexification the domain Dc = Kc • D,
i.e. the image of D under KC-action. This definition agrees with the general
definition of the complexification of a Stein space given in Heinzner [3].

We'll show (cf. Theorems 1,2) that under some natural condition on the K-
action on D its complexification Dc coincides with the holomorphic hull of D

Typeset by AktS-T)EX
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with respect to invariant holomorphic functions. This "natural condition" due to
Heinzner [3] is defined as follows. Let D be a K-invariant domain in C". It is called
orbit convex if for any z E D and any v E it the inclusion expv • z E D implies
exp(tv) • z E D for 0 < t < 1. Here, exp : tc - KC is the exponential mapping.
This definition means, rougly speaking, that KC-orbits of points of D going in the
directions of it cannot return to D after leaving it.

We have the following extension theorem for K-invariant functions.

Theorem 1. Let D be a K-invariant orbit convex domain in C". Then any K-
invariant holomorphic function f on D can be extended to a KC-invariant holomor-
phic function j on Dc. Hence, Dc is a natural holomorphic extension of D w.r. to
K-invariant holomorphic functions.

The theorem in this form was proved in Heinzner-Sergeev [4] and in a more
general situation - in Heinzner [3]. In Theorem I one can substitute K-invariant
holomorphic functions f in D by K-equivariant holomorphic mappings f : D -+ Y
to some holomorphic KC-manifold Y. The assertion is still true, i.e. such a mapping
extends to a KC-equivariant holomorphic mapping j : Dc -* Y. Here, a mapping
f : D -+ Y is called K-equivariant iff f(k. z) = k. f(z) for any z E D, k E K.

There is a partial converse to Theorem 1 proved in Heinzner [3]. Suppose that
D is a K-invariant domain of holomorphy in C' and fQ is a KC-invariant domain
in C' such that any K-equivariant holomorphic map f : D -+ V to a finite-
dimensional representation space V = C0 extends to a holomorphic KC-equivariant
map : fQ -+ V. Then D is orbit convex.

We know from Theorem 1 that K-invariant holomorphic functions on an orbit
convex domain D extend to Dc. We are interested next in the question whether
Dc is the smallest domain with this property, i.e. whether Dc coincides with the
holomorphic hull of D w.r. to K-invariant holomorphic functions ? The answer is
positive for orbit convex domains D.

Theorem 2. Let D be a K-invariant orbit convex domain of holomorphy in C".
Then Dc is also a domain of holomorphy which represents the holomorphic hull of
D w.r. to K-invariant holomorphic functions.

This theorem was proved in Heinzner-Sergeev [4] (assuming that Dc is saturated)
and in Heinzner [3] in a more general setting. The proof is based on an invariant
form of Cartan's theorem which reads as follows.

Cartan's theorem. Let D be a K-invariant domain of holomorphy in C" and A
is a K-invariant analytic subset in D. Then any K-invariant analytic function f
on A can be extended to a K-invariant holomorphic function F on D.

For a compact Lie group K this invariant version of the Cartan's theorem fol-
lows immediately by extending f to a holomorphic function in D (using the usual
Cartan's theorem) and integrating it over the group K.

2. Orbit convex domains..
Now we shall investigate more carefully the orbit-convexity condition. First we

note that it can be slightly weakened without violating the assertions of Theorems
1 and 2. This "weakened" version of orbit-convexity is called orbit-connectedness
(Heinzner [31).
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Denote for z E C' byb, : Kc -+ C' the orbit map b.(h) = h z, h E Kc. A
K-invariant domain D in C" is called orbit connected iff the preimage b;'(D) =

{hEKC: h*zED}isconnectedinKC for anyzEC".
It follows from the polar decomposition of Kc that the orbit-convexity of D

implies its orbit-connectedness. The same proof as in Theorem 1 applied to K-
invariant orbit connected domains in C" shows that the assertion of this theorem
remains true for such domains. So from the partial converse to Theorem 1 we obtain
that for K-invariant domains of holomorphy the orbit-connectedness implies orbit-
convexity. Hence Theorem 2 is also true for K-invariant orbit connected domains
of holomorphy.

Zhou has proved recently an extension of Theorem 2 for orbit connected domains
which are not holomorphically convex.

Theorem 3. (Zhou [10]). Let D be a K-invariant orbit connected domain in
C'. Then its holomorphic hull E(D) is schlicht and orbit connected 4=* E(Dc) is
schlicht. Moreover, in this case E(Dc) = KC . E(D).

A class of orbit convex domains is given by so called orbit pseudoconvex domains
(Heinzner-Sergeev [4]). Let D be a K-invariant domain in C" given in the form
D = {z E C" : V(z) < 0} where p is a K-invariant real C2 -smooth function on
C'. The function V is called orbit plurisubharmonic (w.r. to KC-action on C") if
the Levi form of W is non-negative in complex directions tangent to KC-orbits in all
points of D. Domains D defined by orbit plurisubharmonic functions p are called
orbit pseudoconvex.

Proposition. (Heinzner-Sergeev [4]). Let D be an orbit pseudoconvex domain in
C". Then it is orbit convex.

We consider next a class of orbit convex domains presented by Reinhardt do-
mains. Recall that a Reinhardt domain D in C" is the domain invariant under
the action of the torus group (S')', i.e. satisfying to the condition (zl,..., zn) ED ==. (ei~zrl,... ,e iezn) E D for all (zj,...,zn) E D and all real 01,...,On.

The complexification of D is the domain DC = (C*)n" D = {(Ajzl,... ,Anzn):
(Zl,... ,zn) E D; Aj E C', 1 < j _5 n} which coincides with the direct product
(C*)' x Cn-" for some r, 0 < r < n.

It's easy to show that Reinhardt domains in (C*)n are orbit convex 4=• they
are log-convex. Such domains in (C*)n are always orbit connected. It's well known
that a complete Reinhardt domain D in Cn is holomorphically convex if and only
if it is log-convex. In particular, any complete log-convex Reinhardt domain in C"
is orbit convex. Here, D is complete iff with any point (z.... , z°) it contains also
the polydisc {(zl,... ,z,) : lzi[ < Izl, i = 1,... ,n}. Thus the orbit-convexity of
Reinhardt domains is closely related to their holomorphic convexity.

Let us consider now a generalization of Reinhardt domains to the matrix case.
Denote by Cn [m x m] the space of n matrix variables, i.e. a point Z E C" [m x m]
is an n-tuple Z = (Z 1,... ,Zn) where all Z,, 1 < i < n, are m x m-matrices
with complex entries. A domain D C C"[m x m] is called a matrix Reinhardt
domain (Sergeev [7]) if with any point (Z 1,... , Zn) E D all points of the form
(U1Z 1V 1,... ,UZn V,) for arbitrary unitary matrices Ui, Vi, 1 < i < n, also belong
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to D. Otherwise, matrix Reinhardt domains are the domains invariant under the
natural action of the group [U(m) x U(m)]" on C"[m x m].

A matrix Reinhardt domain D is, in general, not a Reinhardt domain in C"" 2

but we can always associate with D a Reinhardt open set (maybe not connected)
diag D in Cn'n, namely diag D = {(Z 1,... Zn) E D : Z1 are complex diagonal
m x m-matrices, , 1 < i < n}.

We have the following matrix analogue of the above assertions for Reinhardt
domains.

Proposition. A matrix Reinhardt domain D C [GL(m, C)]" is orbit connected.
Hence, D is orbit convex if it is a domain of holomorphy.

This proposition is a corollary of general results on invariant domains in homo-
geneous spaces proved by Lasalle [6].

Passing to the case of general matrix Reinhardt domains D in C' [m x m] we have
the following analogue of the above assertion for Reinhardt domains: a complete
matrix Reinhardt domain D is holomorphically convex 4=• diag D is holomorphi-
cally convex 4=* diagD is log-convex (Sergeev (7]). Here, D is complete iff with
any point (Z°,... ,Z°) it contains also the matrix polydisc {(Z 1,...,Zn) : IIZill <

11Z4II, i - 1,... ,n} where IiZiI = max{ eigenvalues of V/77Z} is the spectral norm
of a matrix Z. In fact, a stronger result is true.

Theorem 4. Let D be a matrix Reinhardt domain in C [m x m]. Then D is holo-
morphically convex ,= diagD is a connected holomorphically convex Reinhardt
domain in C"m".

This theorem is proved by Bedford-Dadok [1], the sufficiency is proved inde-
pendently by Zhou [9]. (Another proof of this result was proposed in Fels [2]).
Bedford-Dadok [1] had also considered domains invariant under so called polar
actions of classical groups and proved a similar criterion for their holomorphic con-
vexity.

Another important example of orbit convex domains is given by the extended
matrix disc.

The matrix disc is a domain A in the space C[2 x 2] of the form A = {Z E
C[2 x 2]: IIZII < 1}. The condition IIZII < 1 where 11 is the spectral norm of Z (cf.
above) is equivalent to the positive-definiteness of the Hermitian matrix I - Z*Z.
The matrix disc is invariant under the action of the group K = SU(2) x SU(2)
given by Z 1-+ UZV- 1 , Z E A, UV E SU(2). The action of the complexified
group Kc = SL(2, C) x SL(2, C) on C[2 x 2] is given by the same formula and the
complexification AC is equal to Ac = KC " A = {Z E C[2 x 2] : Idet ZI < 1). Note
that A is a matrix Reinhardt domain in C[2 x 2] (but not a Reinhardt domain in
C4 ).

The extended matrix disc A' is defined as
A' = {(AZ 1B- 1 ,...,AZnB- 1 ) E C[2x2] : (Z1 ,...,Z,) E A", A,B E SL(2,C)}.

Otherwise speaking, we consider the matrix polydisc A" = {(Z 1,..., Z,) E Cn[2 x
2]; 11Zi11 < 1, i = 1,...,n} with the diagonal action of the group K = SU(2)xSU(2)
on Cn [2 x 2]

(Zl,... ,Z,) v -4(UZ 1V 1 ,...,UZV'), U SU(2).
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Then A" is invariant under K and A' coincides with the image of A" under the
diagonal action of KC = SL(2, C) x SL(2, C) given by the above formula: A' =

= Kc A"n. Note that A' is not a matrix Reinhardt domain (Zhou).
There was a conjecture proposed by some mathematicians and physisists assert-

ing that the extended matrix disc is a domain of holomorphy. It is in fact a compact
version of the well-known "extended future tube conjecture" from the quantum field
theory (cf., e.g., Vladimirov [8]). To formulate this last conjecture we define first
the extended future tube Tn. For that we need to substitute the matrix polydisc An

in the definition of A',, by the direct product of future tubes 7+ x ... x T+ (n times)
wherer+ = {z = x+iy E C 4 : yi > y2+ 3+ 4 yi > 0} and the KC-action
on C" [2 x 2] by the diagonal action of the identity component Lc of the complex
Lorentz group LC = 0(4, C). In other words, the extended future tube r-, is defined
by byAz1 .A(n) ) E Cn : P~) E +i l,.. n; AE Lc}.

The extended future tube conjecture asserts that T" is a domain of holomorphy for
any n. It is still open for n > 2. However, using the above results we can prove its
compact version, namely we have the following

Theorem 5. (Heinzner-Sergeev [4]). The extended matrix disc A' is a domain of
holomorphy in Cn [2 x 2] = C4' for any n.

The theorem follows from Theorems 1 and 2 by proving that A" is a K-invariant
orbit convex domain of holomorphy in C4n; the orbit convexity follows from the
proposition about orbit pseudoconvex domains above.
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Abstract. In the classical Shannon sampling theorem, the same sequence

of functions is both orthonormal and a sampling sequence. This is not true

for most wavelet subspaces in which the sampling functions and the orthonormal

bases are different. However by oversampling at double the rate the property

of the Shannon wavelets is extended to a much larger class which includes the

Meyer wavelets. In fact together with another condition, it characterizes

them.
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1. Introduction.

Expansions in series of orthogonal wavelets have a number of unique

properties not shared by other orthogonal expansions. Two properties that

make them useful are their superior pointwise convergence [10] [61 and their

localization [51. For example, the wavelet expansion of a continuous function

converges uniformly; this is not true for most other systems. If the function

is zero on an interval, the coefficients corresponding to that interval will

be small or even zero.

However in this work we shall concentrate on another property, the

sampling property of wavelet subspaces. These are similar to the classical

Shannon sampling theorem [21 which recovers a band limited function from its

values on the integers

U

f(x) = W f(n) S(x-n), x e R, (1.R)

where S(x) = sin rx/sx.

In wavelet expansions a central role is played by a multiresolution

approximation, i.e. a sequence WV ) of subspaces of L (R) each of which is am

dilation of the previous one such that VI c V m4, m e Z. (More details are

given in section 2.) In [11] it was shown that under a weak hypothesis
satisfied by most examples, each f e V can be represented by a sampling

0

series similar to (1.1). However the series is not the wavelet expansion;

rather (S(x-n)) is a different Riesz basis of V. Also there are some
0

important cases which don't work, e.g. splines of even order [31.

Recently Xia and Zhang [121 introduced a family of wavelets for which the

father wavelet V(t) satisfies both the orthogonality condition

r. (t)((t-n)dt = 6On and the sampling property (o(n) = On. Unfortunately, as
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they showed, V cannot have compact support; and their family does not include

other important families of wavelets.

In this paper we shall weaken the sampling property somewhat. Rather

than look for a sampling function in V we shall look for one in the dilation0

space V and try to recover f e V by its values on the half integers. This

gives us a sampling theorem for many additional familites of wavelets composed

of orthogonal sampling functions. In particular it includes the Meyer type

wavelets and in fact, together with another condition, characterizes them.

This sampling property is important since it avoids integration in the

approximation to f e L2 (R) at the finest scale

f r(t) =a an 2 p,(2mt-n).

The coefficients a can be obtained by sampling and the others at coaserinn

scales by the decomposition algorithm [8].

2. Background in Wavelets.

The theory of orthonormal wavelet bases of L2 (R) may be found in a number

of places. Detailed introductions may be found in (31 and [51 while a more

complete development in Rn is found in [9]. Here we present a few of the

basic concepts and examples most of which we shall use later.

A wavelet basis of L2 (R) is composed of a sequence (Mn ) of functions

given by

S(t) = 2m/Z#(2it-n), m,n e Z (2.1)

where 0 is a fixed function in L (R),the "mother wavelet." Such an

orthonormal basis is difficult to construct and is usually based on another

function f(t), the "father wavelet" or scaling function. Associated with V is
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a multiresolution approximation (MRA) of L2(R), i.e. a nested sequence of

closed subspaces (V M such that

(i) {9(t-n)) is an orthonormal basis of Vo,

(ii) ... c V c V c V c ... c L2 (R)-1 0 1

(iii) f e V M. f(2.) V , (2.2)mt m1t.1

(iv) U V -L2(R).
m m

2 1

In addition to the condition ( e L (R) we shall also require V E L (R)
co

(at least). Here (p denotes the Fourier transform V(w) = f v(t)e-lwt dt.
-u0

Clearly Q21/2 v(2t-n)) must be an orthonormal basis of V by (iii) and (i).1

Since V e V1 , by (ii), it must have an expansion

W(t) = k cv v- 0(2t-k), ck e t2. (2.3)
k

This is the "dilation equation" for vo; in terms of its Fourier transform it

can be expressed as

E Ikw/2 -1/2f(w) = c e 2 V(w/2) = m (w/2)v(w/2) (2.4)
k

Once we have the father wavelet 0(t), we may use it to construct the

"mother wavelet" 0(t). It must be chosen such that (O(t-n)) is an orthonormal

basis of the space W0 , given by the orthogonal complement of V in VI. Then

V =V 0 W.

If such a 0(t) can be found, then 2 mn2(2 m/t-n) = (t) is an

orthonormal basis of W , the dilation space of W . Indeed from (2.2) itm 0

follows that
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0 W -L2(R)meZ m

and hence (0 } is an orthonormal basis of L2 (R).
n.m n.mEZ

The method of finding 0(t) involving the dilation equation is

straightforward; 0(t) is defined as

0(t): E c c-k(-l)k0(2t - k), (2.5)
k

or

-Iw/2 W w

0 2 2

Then it is merely a matter of checking that the orthogonality conditions are

satisfied (5].

3. Meyer Type Wavelets. This example which will appear again in the next

section, is an alternate way of defining the wavelets studied originally by

Lemarie and Meyer [7] and subsequently by Auscher, Weiss, and Wickerhauser

11]. They have the property that the Fourier transform of the father wavelet

V(t) has compact support.

Definition 3.1. Let the function (p(t) be given by

;P(w) = {i'i: h}

where h is a symmetric, positive distribution with support in -- -] such that
3' 3

<h,1> = I. Then 4(t) will be a father wavelet with an associated MRA (V .
m

Its associated wavelets will be denoted Meyer type wavelets.

We first consider some of the properties of IV(w)1 2. Let (-c,€c be the

smallest interval containing the support of h. It is clear that
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(W) 12p[= {-•-, W+Cl - 4W. zI,
, 1 for I w (3.1)

GO ~. I P2 _ * 3

(iii) £I (w÷2nk)I' = f h = 1.
k -0

In order to show that ( is a father wavelet we must show the dilation equation

(2.4) holds. If we define

moS: = (w+4wk)
0i k

then mo(w) - 0 for-I < w.1 < -and hence

V(w) = m0o2 2

holds. Since by (3.1) (iii) and an application of Poisson's summation formula

(p is orthogonal to its translates as well, it is a father wavelet. (The

condition (2.2) (iv) is clear in this case.) The mother wavelet i (2.6)

satisfies lo(w)lj -hw.I-
t/2-W/1

Each appropriate distribution (i.e. each probability measure with support

in [-w, 1) will generate a MRA, which, as we shall see, has the oversampling

property. We present a few particular cases for completeness.

Example I. Shannon wavelet. Take h(w) = 8(w); then

S(w) 1 -r50: +
-W 0, O.w.

This gives 4(w) = I-_I,)(w) whose inverse Fourier transform is

p(t) = sin zt/wt = sinc t.
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Expansions in terms of {v(t-n)) of f e V constitute the well known Shannon

sampling theorem given by (1.1).

Each appropriate distribution (in particular each probability measure

with support in I-!, !]) will generate a MRA, which, as we shall see., has the
3' 3

oversampling property. We present a few particular cases for completeness.

Example 1. Shannon wavelet. Take h(w) - 6(w); then

2(W) = W 1,, w-W 0 S w+w
f W .. f 0. OW.

This gives P(w) = ;t,(w) whose inverse Fourier transform is

((t) = sin irt/wrt = sinc t.

Expansions in terms of ({(t-n)) of f E V0 constitute the well known Shannon

sampling theorem given by (1.1).

Example 2. Original Meyer Wavelet. Lemarie and Meyer [51 defined a wavelet

whose father wavelet [5, p. 1371 turns out to be

31w {_ ), i -1 , :s 4
Ow) cos[ w- - Iw( 3 3

0 , O.W.

where v(x) is a Ck function k a 1, satisfying

(0, x S 0

V(x)=

and v(x) + v(l-x) = I.

This can be put into the form of Definition 3.1 by differention of q(w).

139



Example 3. Exponential function. The standard example of a CO function

with compact support is

e /(X _1)1)
ex = ý

Then h(w) = C e(w) satisfies the required conditions for c s x/3. The
C C

resulting p c C and (p(t) c S.

Example 4. Non symmetric h(w). Let h(w) = c-t (o.Cl(w). The V(t) satisfies

(2.2) but will not be real.

Example S. Non positive h(w). If h is taken to be

3

h(w) = 3(w+c) - 2(w) + 46(w-c)

then the conditions are satisfied except that h is not positive. This still

however leads to a legitimate V(t).

4. A Characterization of Over Sampling Subspaces.

In this section we first look for the properties of the father wavelet

O(t) in order that (,(2t-n)l be a sampling sequence for Vo. We then show that

for the Meyer family, these properties are satisfied. Finally we show that

the over sampling property together with another property characterize this

family.

Accordingly let V(t) = O((l+ItI)-l- ) and V(w) = O((1I+wI)-), C > 0,

and let ({(t-n)) be an orthonormal basis of V such that for each f c V
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f(t) a • f(2) *(2t-n), (4.1)
n

in the sense of L2(R). Then, in particular,

f(t) = (p(!!() (p(2t-n) (4.2)

n

and by taking Fourier transforms we find

I n-iwn/2 W(4
;(w) = e •( (4.3)

n

- (w+4wk) (w).
k

The last equality is obtained by finding the Fourier coefficients of the 4O

.riodic function

VOW:= V (w+4tk),
k

i n
which are exactly (). Thus the Fourier transform of the dilation equation

(2.4) is

(Pw = ;()V() 44

This is also sufficient for (4.1) to hold.

Lemma 4.1. Let Vo be a father wavelet such that (p(t) = O((l+Itl)"-€f ) and

;(w) = 0((I+jwi) for v > 0; then (4.4) holds for V if and only if (4.1)

holds for all f c V
0

In order to show that (4.1) holds we must first show the series converges
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in the sense of L2 (R). Since {v02t-n)) is orthonormal. we need only show

that If(2)) c 1'. Since f c V Q V . it has an expansion convergent in L2 (R)2 0 1

and because of the decay property of V(t). uniformly on bounded sets,

f(t) - a n.12V v(2t-n).
n

Thus we have

f(k) = • aV-2 p9(k-n)

and by taking the discrete Fourier transform, we find

fk6e r2 a, e (k)e (4.5)

k n k

The right hand side is the product of a bounded function and an L (-R,w)

function. Hence the left hand side of (4.5) is in L2 (-w,i) and {f(4 C 2.

To show that it converges to f(t) we use its expansion in V0 , which, by

(4.2) is

f(t) - a n o(t-n)
n

- Z an,° p(h)(2t-j-2n)

= • a, E• o(•-n)V(2t-k)

k

The interchange of the two series is justified since the inner series is a

convolution of two t I sequences. This is all we need since the last series

converges in L2 (R). 0

We now turn to the Meyer type wavelets presented in section 3. Their
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father wavelets (p were given by

Io(w) = h(<)d<I (4.6)

where the smallest support interval of h is (-c,c), 0 S c 5 3-3.

Lemma 4.2. Let t(w) satisfy (4.6); then it also satisfies (4.4).

Since V is taken to be the positive square root in (4.6). we need only

show that

IV(w)12 = I;'(w)l2 IV( )12 (4.7)

Since V has support on [-x-c, x+cJ, it follows that v" has support on Q =

U[-C+(4k-l)w.e+(4k~l)x]. Thus on the support of I(F) = O and (4.7). = c(4kland (4.7)l.V

becomes

I^(w)12 = I,(W)121;(W)12.

Moreover, I() = I on [-2x+2c,2x-2cJ • (-2-cx+c], the support of (. Thus

(4.7) holds. a

We can also go in the opposite direction. We begin with (4.4) and try to

get (4.6).

Lemma 4.3. Let V(t) be a father wavelet satisfying the conditions of

lemma 4.1 and (4.4); let the support of (p be a bounded interval; then there is

a distribution h, <h,l> = 1, with support in an interval of length S 2r/3

contained in [-xx] such that
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h 0 and]12

We first observe that the support of V must be a finite interval [-a,bi

where both a and b are positive. This follows from the fact that V(O) - I

(this is true for all nice scaling functions, see [51). Since v is continuous

its support contains a neighborhood of the origin.

The support of VO is 0 = vf-a+4wk,b+4wkI and hence if b + a a 4w, would

be all of R. But this is impossible since by (4.4) the support of ;() would

also have to be [-a,b]. We can say much more since by (4.4)

[-a,bl - [-2a,2b] rn 0.

Hence -a + 4w a 2b and b - 4w s -2a which may be expressed as

a + 2b s 4w, 2a + b S 4w (4.8)

which may be added to obtain a + b ,s 8w/3.

On the other hand 2w s a + b since otherwise the orthogonality condition

£1,{w÷2xk)I2 = I, w e R. (4.9)
k

would be violated.

Since on the support of V, (4.4) becomes

V(W) = V(w)V(.-), (4.10)

it follows that p(f) = I on (-a,bI or Ow) = I on a-b
2 T() f2
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We now define h(w) to be

Sd I (+) 2 0 <,w,+,Xhiw): (ww)j ,

0 w+ SO0

where the derivative is in general taken in the distribution sense. It should

be noticed that h(w) = 0 for w < x -a or w > b - w. Furthermore, since

I^,w.W)I2 + I;,w-w1l2 - I for w - a < w < b - w, it follows that

I~w d { 1 ; (w - K12' w - X< 0

h(w) U 0
0 w -i a 0.

From these two expressions we deduce that

-w .1

lVw)l 2 = J h(,)ds x 0, w e R,. (4.11)
w-1C

which may be rewritten as the conclusion of the Lemma, since the length of the

support of h is b + a - 2w s 2w/3. 0

By the hypothesis V(w) 1 must be continuous but not necessarily

differentiable. so that h is not necessarily a function. To be consistent

with (4.10) we must take V(w) to be the positive square root of I;(w)12 . Its

inverse Fourier transform ((t) is not necessarily real. However V(w) is
-a~b

symmetric about a if h(w) is symmetric about 0. Therefore in this case
-a2b

V(t) can be made real by shifting w by an amount .-a- . Then h(w) satisfies

the conditions of Definition 3.1, except for the positivity. We add this as a

hypothesis to get
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Theorem 4.1. Let q(t) be a real, symmetric father wavelet such that f(t) -

IC ^-1-C 
-0(l+It)-, (w) = 0(l+IwI) , c > 0 and Vp is non increasing for w > 0;

then V(t) is a Meyer type father wavelet if and only if Ui) 9(t) satisfies the

double sampling property (4.2) and (ii) the support of V(w) is a bounded

interval.
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Normal Families Revisited

Lawrence Zalcman

1. A matter of principle.

Let D be a domain in the complex plane C. We shall be concerned with analytic

maps (i.e., meromorphic functions)

f: (D, I IaR) -*Cx)

from D (endowed with the Euclidean metric) to the extended complex plane

C, endowed with the chordal metric X, given by

Iz - z'1 z, z' I C

1

x(z' oo) = V~1 T

A family Y of meromorphic functions on D is said to be normal on D if each

sequence {fn} C F has a subsequence which converges X-uniformly on compact

subsets of D. It is easy to see that in case all functions in Y are holomorphic,

this condition is equivalent to the requirement that each sequence {fn} C F have

a subsequence which either converges uniformly (with respect to the Euclidean

metric) on compacta in D or diverges uniformly to oo on compacta in D.

The classic example of a non-normal family is the collection of (holomorphic)

functions F = {nz : n = 1, 2,3,... } on the unit disc A. Indeed, set fn(z) = nz and

let K be a compact subset of A which contains the origin and at least one other

point zl. No subsequence of {fn} can converge uniformiy on K (since Af(zO) -+ oo),

nor can any subsequence of if,,} diverge to infinity (as f,(O) = 0 for all n). We

shall have occasion to refer to this example several times in the sequel.

Normality is, quite clearly, a compactness notion: a family F of meromor-

phic functions on D is normal if and only if it is precompact in the topology of

X-uniform convergence on compact subsets of D. Accordingly, by the Arzela-Ascoli
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Theorem, normality is equivalent to equicontinuity on compacta of the functions

in Y. Since these are smooth functions, this equicontinuity should be equivalent to

the boundedness of an appropriate derivative. Such is the content of

Marty's Theorem. [18] A family Y of functions meromorphic on D is normal on

D if and only if for each compact subset K C D there exists a constant M(K) such

that

f#(z) -5 M(K) (*)

for all z E K and all f E F.

Here f# denotes the spherical derivative

f#(z) - lim x(f(z + h), f(z))
h-+o IhI
SI1'(z)I

I + If(z)f 2

Since X(z, w) = X(1/z, 1/w), f# - (1/f)#, which provides a convenient formula

for f# at poles of f.

Marty's Theorem provides a complete and satisfying answer to the question

of when a family of functions is normal. Unfortunately, in practice it is almost

useless, as verification of the condition (*) in cases when normality is not evident

is generally extremely difficult. The search for other, more useful, conditions for

normality has given rise to the following heuristic principle: "A family of holomor-

phic (meromorphic) functions which have a property P in common in a domain D

is (apt to be) a normal family in D if P cannot be possessed by nonconstant entire

(meromorphic) functions in the finite plane" [10, p.250]. This principle is often

attributed to Andr6 Bloch; however, I have been unable to find any mention of it

in his published writings.

Examples.

1. Say f has property P on D if If(z)l 1 17 for z E D. By Liouville's Theorem,

any entire function with P is constant. That a family of (holomorphic) functions

having P on a domain D is normal is a familiar result of Montel.
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2. Say f has P on D if f(z) 6 a,b,c on D, where a,b,c are (distinct) fixed

values in C. Picard's Little Theorem asserts that a meromorphic function on C with

this property must be constant, and it is a celebrated theorem of Montel that a

family of meromorphic functions having P on a domain D is normal.

3. Say f has P on D if f is univalent on D, and f(z) 6 a,b on D, where a

and b are (distinct) fixed values in C. We leave the details to the reader.

The heuristic principle has proved itself extremely effective in the identification

of criteria which insure normality. However, it must be used with care. Consider, for

example, the property "f is not entire." Obviously, no nonconstant entire function

has this property (nor, for that matter, do the constants). On the other hand, it is

clear that the property does not imply normality. Indeed, fix an analytic function g

having the unit circle as a natural boundary and consider the collection of functions

Y = {g4} on A, where g,(z) = nz+g(z). Clearly, no function in F is entire; equally

clearly, Y is not a normal family.

If the (counter)example of the previous paragraph seems frivolous (and I do

not think it is), more serious examples are near at hand. For example, the property

"f is bounded" forces an entire function to be constant; however, every function in

our paradigm non-normal family {nz} has this property on A. A similar comment

applies to the property "f omits three values." Examples like these point up the

need for a rigorous version of the heuristic principle. In his retiring presidential

address to the Association for Symbolic Logic [27], Abraham Robinson listed this

as one of twelve problems worthy of attention of logicians (and, by extension, of

mathematicians in general).

It turns out to be possible to answer Robinson's question in a stronger form

than he had expected and without recourse to nonstandard analysis (which, nat-

urally enough, he had hoped might provide the key to the solution). However,

before turning to this, we need to dispose of the question: what is a property?

Answer: a set (viz., the set of all objects having the property!). As we shall be con-
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cerned with properties of functions on domains in the plane, it will be convenient

to display the domain of the function explicitly together with the function. Thus,

following Robinson, we write (f, D) to denote the function f defined on the domain

D C C, and we distinguish between the functions (f, D) and (f, D') if D 0 D'. If

the function f has property P on D, we write (f, D) E P. It is iiow possible to state

Theorem 1. [36] Let P be a property of meromorphic (holomorphic) functions

which satisfies the following three conditions:

(i) If (f,D) E P and D' c D, then (f, D') E P.

(ii) If(f,D) E P and p(z) = az +b, then (f o W, -p(D)) E P.

(iii) Let (f,.,,Dn) E P, where D, C D 2 C D 3 C ... and U D" =C. Iffn -+ f

nL=1
X-uniformly on compact subsets of C, then (f , C) E P.

Suppose (a) (f , C) E P only if f is constant.

Then (b) {f : (f,D) E P} is normal on D for each D C C.

Conversely, if (i) and (ii) hold, then (b) implies (a).

This result provides a highly satisfactory explication of the heuristic principle

so far as properties formulated in terms of the values taken on or omitted by func-

tions is concerned. In such cases, conditions (i) and (ii) will generally be satisfied

trivially, while (iii) follows more or less routinely from Hurwitz's Theorem.

Examples. (continued)

4. Fix - (small) and let (f,D) E P if f(z) $ a,b,c on D, where now a,b,c E

are allowed to vary with f but X(a, b)X(b, c)X(c, a) > e. By Picard's Little Theorem,

(a) holds; hence we obtain a sharpening of the classical version of Montel's Theorem

(cf. [3, p.202]).

5. Fix a, b, c E C (distinct) and natural numbers e, m, n such that

1/i + 1//m + 1/n < 1. Let (f, D) E P if all a-points of f in D have multiplicity at

least t, all b-points multiplicity at least m, and all c-points multiplicity at least n.

It is an easy consequence of Nevanlinna's Second Main Theorem [23, pp.277-281]
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that if (f, C) E P, then f must be constant. Thus (a) holds, and we obtain a

generalization of a result of Montel [21, pp.1 25-126] due to Drasin [6, pp.238-239].

6. Let ai (< i < 5) be five distinct values in C. Say (f, D) E P if all a,-points of

f in D have multiplicity at least 2, 1 < i < 5. As in the previous example, a globally

defined meromorphic function with this property must be constant. Accordingly,

the family of all meromorphic functions having P on a fixed domain D is normal

on D. (For holomorphic functions, three values suffice.)

7. Say (f, D) E P if f = g', where g is (analytic and) univalent on D or f = 0

on D. (This last possibility is required if (iii) is to hold, as the limit of univalent

functions could be constant.) Since the only univalent entire functions are linear, it

is clear that (f, C) E P implies f is constant. Thus the (non-normalized) family of

derivatives of all univalent functions on D C C is normal on D. By way of contrast,

the family of all univalent functions on a domain is not a normal family (consider

{nz} on A), nor is the collection of second derivatives of univalent functions (cf.

Example 10 below).

One attractive aspect of Theorem 1 is that it explains the failure of the heuristic

principle in those cases when it does not give correct results.

Examples. (continued)

8. Say (f, D) E P if f is bounded on D. Clearly (i), (ii) and (a) hold in this

case; however, as we have seen, (b) does not follow. This is because (iii) does not

obtain. Indeed, fix any nonconstant entire function f and let Dn = {IzI < n}.

Then (f, DO) E P for each n but clearly (f,C) Q P. A similar discussion applies

to the properties "f omits 3 (distinct) values on D" and "f is not entire" (i.e.,

(f,D) EP 4* D C).

9. Say (f,D) E P if f is analytic on D and satisfies If(z)1 1 If'(z)I and

0 E f(D). Suppose (f,C) E P. Then If(z)I _I jf'(z)I on C, so .f/f ' is constant, and

(log f)' = f'/f is also. Hence f(z) = Keaz and, since 0 E f(D), K = 0. Thus

the only entire function having P is f(z) =0 . That P does not force normality is
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evident from the family {nz} on A. In this example P fails to satisfy any of the

conditions (i), (i), and (iii).

10. Define (f, D) E P if f = g", where g is analytic and univalent on D. The

only entire function with this property is f(z) 0 0. Setting g,(z) =

n(z + z2 /1l0 + z3/100), we have Reg'(z) > 0 on A so gn is univalent there. Since

fn(z) = g"(z) = n(2/l0O+6z/l00) vanishes at z = -1/3 for each n, {fn} does not

form a normal family on A. Clearly (i) and (ii) hold, so it must be (iii) that fails.

Verifying this is an amusing exercise, which we leave to the interested reader.

11. Say (f,D) E P if f is analytic on D and f'(z) : -1, f'(z) 5 -2,

f'(z) 5 f(z) for z E D or f - 0 on D. Suppose (f,C) E P; then f' is entire, hence

constant (since f' 5 -- 1, -2 on C). Thus f(z) = az + b. But then f(z) - f'(z) =

az + (b- a) 5 0, so that a = 0 and f is constant. However, {nz} has P on A. Here

it is condition (ii) that fails. It is obvious that (i) holds. To verify (iii), suppose

f,,, - f uniformly on compacta, where f" n -1, -2 and f" - 5 0 on D,. Then,

by Hurwitz's Theorem, f must satisfy

A B

1. f' -I or f'=-1 (i.e., f(z)=-z+b)

2. f' -2 or f'- -2 (i.e., f(z) = -2z + c)

3. f'-f 60 or f'- f = 0 (i.e., f(z) = Kez)

1B and 2B contradict 3, and 3B contradicts 1 and 2 unless K = 0. Thus (f, C) E P.

These last two examples of the failure of the heuristic principle are due to

Rubel [291. They show clearly that neither (ii) nor (iii) may be dispensed with in

the formulation of Theorem 1.

Theorem 1 is a fairly direct consequence of the following Lemma, which pro-

vides a characterization of non-normal families on A.
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Lemma. [36] A family r of functions meromorphic (resp. holomorphic) on the

unit disc A is not normal if and only if there exist

(a) a number 0 < r <1

(b) points zn, IznI < r

(c) functions fn E

(d) numbers p, -- 0+

such that

(e) fn(z. + p.¢) -+ 0(0)

x-uniformly (resp. uniformly) on compact subsets of C, where g is a nonconstant

meromorphic (resp. entire) function on C, which can be taken to satisfy

9#(z) <ý g#(0) = 1, z EC.

Examples. (continued)

12. Consider the non-normal family F = {(2z),} on A. Choose fn(z) = (2z)n,

Zn = 1/2, pn = a/2n. Then fn(zn + PnO) = (1 + a(/n)n -4 eaý on C- For the

normalization g#(z) < g#(0) = 1, choose a = 2.

13. Let F = {nz 2 }. Choose fn(z)= nZ2, Zn = b/l/i- + o(i/ v/'n),

p = a/vfn+o(1/v/n) Then fn(zn +Pn ) = n a(a+b+o(1) ) (a(+b)2 on

C. To normalize, set a -Y"3, b = ý/i3.

To prove the Lemma, suppose first that F is normal on A and that (a)-(e)

hold. By Marty's Theorem, there exists M > 0 such that

max f#(z) < M
Izl<(1+-)/2

for all f E F. Fix C E C. For large n, IZn+Pn(I <_ (1+r)/2 so that pnf!(zn+p,

pM. Thus, for all C E C, g#(O) = limpnf,!(zn + Pn() = 0. It follows that g is a

constant (possibly infinity).

Conversely, if Y is not normal, by Marty's Theorem there exists a number r*,

0 < r* < 1, points z* in {IzI :_ r*}, and functions fn E Y such that f! (z4) -+ oo.
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Fixr, r*<r<l, andlet

M1,= max (1 z12 i ()f-z)

The maximum exists since f! is continuous for Izj :_ r. Clearly we have

Mn >_ (1 -:;IZ2/r2)(z) 00. Put

r2 f! (z,)

This works! (For details see [36].)

The proof of the Lemma is one of the few really effective uses of Marty's

Theorem of which I am aware. It is of such a general character that it is rather

easily adapted to other situations. Appropriate versions thus hold for families of

quasiregular or quasimeromorphic functions in space [19] and certain holomorphic

mappings in C' [1], leading to versions of Theorem 1 for these classes. One almost

immediate consequence of the (proof of the) Lemma is

Brody's Theorem. [2] A compact complex manifold is hyperbolic if and only if

it contains no complex lines.

For details on this, see [31, p.9 5].

2. Divide and conquer.

Theorem 1 works wonderfully well for properties involving values taken on or

omitted by the functions in a family, but it is much less successful in dealing with

properties involving derivatives. This is because such properties will not generally

satisfy the requirement (ii) of invariance with respect to linear change of the in-

dependent variable. On the other hand, the heuristic principle is known to give

correct resuts for many such properties. What is going on?

Example. 14. Say (f,D) E P if f is analytic on D and f $ 0, f' : lonD or

f = 0 on D. It is an old result (due, perhaps, to Borel) that an entire function with

this property must be constant. It has also been known for over half a century [20]

that P implies normality. However, Theorem 1 does not apply since (ii) fails.
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In his problem book [8], Hayman listed a number of open questions on nor-

mal families of similar shape; in each case, a property involving values of certain

derivatives of a function is known to imply that an entire function or a globally

defined meromorphic function must be constant. Does the same property imply

normality for a family of holomorphic or meromorphic functions? Over the years,

most of these questions have been answered (affirmatively), frequently by a judi-

cious mixture of Nevanlinna theory with the Lemma of the previous section. What

has been missing until now has been a uniform approach which yields transparent

proofs of such results with a minimum of effort, along the lines of the examples of

the previous section. Now such an approach is available, thanks to the efforts of a

number of Chinese mathematicians, most notably Xue-cheng Pang [25],[26].

We have already seen (in Example 11) that condition (ii) cannot be dispensed

with in Theorem 1. Pang finds a substitute condition (id') (actually a continuum

of substitutes), better adapted for handling derivatives, under which (the analogue

of) Theorem 1 remains true. Specifically, condition (ii) is replaced by

(id') For some a, -1 < a < 1, if (f, D) E P and V(z) = az + b then

f-- , ýpl(D)) E P.

Of course, when a = 0 this reduces to (ii).

The proof of Pang's result is not difficult. It is based on an analogue of the

Lemma, in which (e) is replaced by

() fMz. + p-0) g(00.

Here, as before, -1 < a < 1. It turns out [4] that if all zeros of functions in F have

multiplicity greater than or equal to k one may take -1 < a < k; in particular,

if functions in F never vanish, one can choose any a > -1 [32]. Naturally, these

wider possibilities of choosing a carry over to condition (id').

Exercise. Based on these last remarks show that for analytic (i.e., holomorphic)

functions one can choose any a < 1. Give an example to show that a > 1 is not

allowed.
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Examples. (continued)

15. (Problems 5.12 and 5.13 of [8]) It is known that the condition f'f h

1 forces an entire function to be constant (Hayman [7], Clunie [5] for n = 1).

The same condition implies that a meromorphic function on C is constant when

n > 2 (Hayman [7], Mues [22] for n = 2). The corresponding normality results

are due to Yang and Chang [331 (for analytic functions, n > 2) and [34] (for

meromorphic functions, n > 5), Gu [12] (for meromorphic functions, n = 3,4), and

Oshkin [24] (for analytic functions n=1); cf. Li and Xie [16]. Pang's extension

of Theorem 1 yields an astonishingly simple proof of all these results plus the

(previously unknown) case of meromorphic functions n = 2.

Accordingly, let us say (f, D) E P if fIf n 1 on D. It suffices to show that,

for an appropriate choice of a, P satisfies (i), (ii') and (iii). Clearly, (i) holds. Let

g(z) = f(az + b)/a'/(n+1). Then

'(z)gn(z) = af'(az + b) fn(az + b)g'zgnz al/(n+l) an/(n+l)

= f'(az + b)fn(az + b) # 1,

so (ii') is satisfied with a = 1/(n + 1). To verify (iii), suppose fk -4 f locally

(X.-)uniformly, where fkfk i 1. If fif 54 1, we're done. Otherwise, fifn _ 1

by Hurwitz's Theorem; so fn+I(z) - (n + 1)z + c, an impossibility (since f is

single-valued).

Note that the above proof does not distinguish between aaalytic and mero-

morphic functions. In fact, the only thing preventing it from being a proof of

normality in the (still unsettled) case n = 1 for meromorphic functions is the lack

of a corresponding global result: it remains an open question whether a meromor-

phic function on C for which f'f : 1 must be constant.

16. The condition (f')(k) $ 1 forces an entire function to be constant when

n > k + 1 and a meromorphic function on C to be constant when n > k + 3

(Hennekemper [9]). Schwick [30] has shown that these conditions imply normality.
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This follows as in the previous example. Indeed, writing (f,D) E P if (fn)(k) $ 1

on D, we seeat once that (i) is satisfied. Setting g(z) = f(az + b)/ak/n, we have

(gn)(k)(z) = [fn(az + b) (k n)(k)(az + b)b)]1ak I f)•(z )•1

so (ii') holds for a = k/n (< 1). To prove (iii), suppose f, -- f locally

(X-)uniformly, and (fyn)(k) $ 1. If (n)(k) 6 1, we are done. Otherwise, (fn)(k) = 1

by Hurwitz's Theorem, so f(z) = Vr--i, where P is a nonconstant polynomial of

degree k < n, an impossibility.

With a bit of additional work, it can be shown that one has normality for

families of meromorphic functions even when n = k + 2 [11].

17. (Problem 5.11 of [81) A meromorphic function on C which satisfies f $ 0,

f(V) # 1 must be a constant (Hayman [7]). A family of meromorphic functions with

this property is normal (Gu [13]); for analytic functions, this goes back to Miranda

[20]. For a proof, define (f, D) E P if f 5 0, f(V) 0 1 on D or f - 0 on D. Clearly,

(i) obtains. Putting g(z) = f(az + b)/a , we have

g(z) $ 0 g(t)(z) = f(e)(az + b) : 1,

so that (iie) holds with a = e. (Note that we may choose a as large as we like since

f : 0.) Finally, suppose fk -* f locally X-uniformly. Iff 0 0, f( t ) $ 1 or f - 0, we

are done. The only remaining possibility is that f $ 0 but f(t) 1, in which case

f is a nonconstant polynomial and we obtain a contradiction to the fundamental

theorem of algebra.

18. (Problem 5.14 of [8]) Let a, b E C, a $ 0. Hayman [7] proved that a

meromorphic function on C which satisfies f' - afn 6 b must be constant if n > 5;

if f is entire, it suffices to take n > 3. On the other hand, Mues [22] gave examples

of nontrivial meromorphic functions which satisfy f ' - af' $ b for n = 3, 4. For

analytic functions, the normality result corresponding to Hayman's theorem was

proved by Drasin [6]. The corresponding result for meromorphic functions was

159



established (independently) by Langley [14], Song-ying Li [17], and Xianjin Li [17];

cf. Li and Xie [16].

In this case, Pang's generalization of Theorem 1 does not seem to apply directly.

However, his modified version of the Lemma yields normality even when n = 4!

Indeed, let a, b E C, a 0 0, and n > 4 be fixed. If the family of meromorphic

functions which satisfy f' - af " : b on A is not normal, taking a = -1/(n - 1) in

(e'), we can find sequences {zn}, {f }, and {pn} as in (b), (c), and (d) of the Lemma

such that gj(C) = p!'- fj(zj + piC) converges locally x-uniformly to a nonconstant

meromorphic function g. Suppose that g' - agn never vanishes. Putting G = 1/g,

we obtain G'G"-' 2  -a. Since n - 2 > 2, this implies that G is constant by results

of Hayman and Mues (cf. Example 15). Thus g is constant, a contradiction. It

follows that g' - agn must vanish somewhere in C. On the other hand

g9(C)- ag7(C) = p;' f(zj + pe)- ap;- f7(zj + pC)

= p;- f{f(zj + pj)-a f(z + pi)} p;' b,

so that g,(() - ag7(() - p;-'b 0 0. Since g} - agn -+ - ag" uniformly on

compacta disjoint from the poles of g and pj-'b -. 0, we obtain via Hurwitz's

Theorem g' - agn 0 O. It follows (since g $ 0) that

1 1
1-n g-l()I a

so

00 1
"-ý/(1 - n)(a(+ c)

an impossibility.

Note that we have used n > 4 only in dispensing with the possibility that

g/-ag" never vanishes; the second part of the proof requires only n > 3. For families

of analytic functions, a very similar argument, using the result of Hayman's cited

in Example 17, shows that the condition f' - af 2 I b implies normality; cf. [35].

It remains an open question whether the condition f' - af 3 $ b implies normality

for families of meromorphic functions.
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Perhaps a word of explanation is in order concerning why the previous result

for n = 4 holds even in the presence of nontrivial meromorphic functions satisfying

f - af 4 0 b and why it does not contradict the existence of such functions. The

main point is that, in applying the Lemma, we pass from the condition f' - af 4 $

b to g' - ag4 =_ 0; and this last condition does imply (as we have seen) that g

must vanish identically. In point of fact, Mues' construction of functions satisfying

f- af 4 $ b requires that b 0 0. No contradiccion to (the converse part of the

extended version of) Theorem 1 is obtained, since if b 0 0 the property defined by

the condition f' - af 4 : b does not satisfy (i,') for any value of a E (-1, 1) (or, for

that matter, any other value of a).

The approach illustrated in this section " ,s a number of advantages. It yields

results otherwise attainable only with great effort with relative ease. Equally im-

portant, it makes no distinction between the case of analytic functions and the

(formerly much more difficult) case of meromorphic functions. Moreover, it puts

the work in proving normality criteria where (we think) it really belongs: in estab-

lishing results on globally defined individual functions. Last but not least, it gives

a satisfying explanation of why the heuristic principle works - when it does.

3. Picard's Theorem with a smile.

Finally, as an indication of the versatility of the Lemma, let us show how it can

be used to give a new elementary proof of the Great Picard Theorem. Actually, we

shall prove Montel's theorem, that a family of meromorphic functions all of which

omit the same three values on a domain is normal there. The well-known deduction

of Picard's Theorem from this result takes only a couple of lines.

Montel's Theorem. The collection F of all meromorphic functions which omit

three fixed values a, b, c E C on a domain D C C is a normal family on D.

Proof. (Cf. [281) Since normality is a local notion, we may suppose that D = A,

the unit disc. Composing with a linear fractional transformation, we may also
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assume that the omitted values are 0, 1, oo. Let us denote by F,, the collection of

functions on A which omit the values 0, oo and all nth roots of 1, so that Y = Fl.

Note that f E F implies V7 E F,, while if h E F,, then h" E Y.

Suppose now that F" is not normal. Then none of the families F,, is normal, so

by the Lemma we have, for each n, a nonconstant entire function g" obtained as a

limit of functions omitting all values in S,, = {0, 1, e 2ik/n, k = 0, 1,... ,n - 1}. By

Hurwitz's Theorem g, also omits S,,. Moreover, g#,(z) <_ gn#(0) = 1.

Write, for convenience, Tn = S2-, Gn = g2, and consider the family Q = {G,}

on C. Now G*(z) _5 1 for all z E C, so by Marty's Theorem Q is normal on C;

hence a subsequence converges, x-uniformly on compacta, to a limit function G.

Since G* (0) = 1 for all n, G# (0) = 1, so G is nonconstant. The sets Tn are nested,

so that Gm omits values in T, as soon as m _> n. By Hurwitz's Theorem, G must

omit Tn for every n. Since UTn is dense in the unit circle and G(C) is at. open

connected set, this implies that either G(C) C A or G(C) C C \ A. In either case,

we have a contradiction to Liouville's Theorem.
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